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Dynamics of DIS: e + p → e + X

Deep Inelastic Scattering (DIS) was the key to discovering quarks as physical, 
pointlike constituents of the proton (SLAC, 1969)

p = (M,0)

q = ( ,q)
e

e'

DIS has since been a crucial
experimental and theoretical tool.

Nevertheless, our understanding
of the dynamics is still developing

The QCD factorization proofs have
allowed to put the analysis in terms
of parton distributions on a firm
basis 
– but their complicated structure have
to some extent stymied physical insight
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hC/c

CSpec-
tators

Spec-
tators

• One active parton in each hadron
• No interactions with spectators
• Hard subprocess is pointlike

QCD Factorization in Hard Inclusive Processes
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pe
q

p

pé

Transverse resolution

Bjorken limit: 
In the target rest frame: p = (m, 0)

take pe → ∞ and choose “deep inelastic”
events where the photon has large virtuality
Q2 = – q2 and gets a finite fraction y of the 
beam energy: q0 =  yEe = ν

xB =
Q2

2p · q
=

Q2

2mν
fixed

Then its transverse momentum
implies a resolution
                                    in the transverse direction.

〈0|q̄q|0〉 #= 0 and 〈0|Fa
µνF

µν
a |0〉 #= 0

F2(x) =
∑

q

e2
q xfq(x)

x =
Q2

Q2 + M2
X

M2
X =

Q2(1 − x)

x

αs(Q
2) =

12π

(33 − 2nf) log(Q2/Λ2
QCD)

|p〉 =

∫

d[pi] [ψuud|uud〉 + ψuudg|uudg〉 + . . . + ψuudqq̄|uudqq̄〉 + . . .]

q⊥ =
√

1 − yQ

 r⊥ ~ 0.1 fm
Q2 = 4 GeV2

The probability to hit a single parton is  σDIS ~ 1/Q2    (dimensional scaling)

Probability to hit two partons is σHT ~ ΛQCD/Q4    (higher twist contribution)2

Ex: Verify this expression.

αs(Q
2) =

12π

(33− 2nf) log(Q2/Λ2
QCD)

|p〉 =

∫
d[pi] [ψuud|uud〉+ ψuudg|uudg〉+ . . . + ψuudqq̄|uudqq̄〉+ . . .]

q⊥ =
√

1− yQ

r⊥ ∼ 1/q⊥ ∼ 1/Q

xB =
Q2

2p · q
=

Q2

2mν

r · q = 1
2 [r

+q− + r−q+]

∑

X

|T (γ∗ + p → X)|2 = Disc T (γ∗ + p → γ∗ + p)

fq/N(xB, Q2) =
1

8π

∫
dr−e−imxBx−/2〈N(p)|q̄(r−)γ+W [r−, 0]q(0)|N(p)〉

∣∣∣∣ r+=0
r⊥∼1/Q



Paul Hoyer Jlab-HUGS June 2007

5

Longitudinal resolution

pe
q

p

pé

Through a small rotation θ ~ 1/Q 
align q along the negative z -axis

q = (q0, qx, qy, qz) = (ν, 0, 0,−
√

ν2 + Q2)

q = (q+, q−, q⊥) "
(
−Q2

2ν
, 2ν,0

)

q±  = q0 ± q3 
Then the resolution in the space coordinate r, from exp(i r ⋅ q) ≤ 1, is

xB =
Q2

2p · q
=

Q2

2mν

r · q = 1
2 [r

+q− + r−q+]

r+ ~ 1/q– ~ 1/ν → 0 
The photon probes the proton at equal Light-Front (LF) time, r+ = t + z ≈ 0

r– ~ 1/q+ ~ 2ν/Q2 = 1/mxB 
The photon resolution is finite along the light-cone ‘–’ direction
Note: Since t ≈ -z, the resolution in z is 1/2mxB xB = 0.1 ⇒  Δz = 1 fm

“Ioffe length”

Ex: Find θ.

Ex: How far can a photon travel in r+ = 1/ν?

 ≤ 1
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The Handbag

q

p

q

p

0 r

The scaling (leading twist) contribution 
to σDIS arises when the same quark is hit 
in the amplitude and (amplitude)*. 

The photon vertices may be separated 
by the finite resolution distance r–

Ex: 1. Estimate the distance r– (in fermis) at (a) Jlab, xB = 0.2 and (b) Hera,  xB = 0.0001
2. With pq = xp , determine the value of x for which the struck quark is on-shell: (pq +q)2 = 0.
3. Draw a higher twist diagram. Explain why it is small at high Q2.

γ* γ*

pq

According to the optical theorem, the inclusive cross section is given by the 
discontinuity (imaginary part, – – – –) of the handbag (forward) amplitude:

q⊥ =
√

1− yQ

r⊥ ∼ 1/Q

xB =
Q2

2p · q
=

Q2

2mν

r · q = 1
2 [r

+q− + r−q+]

∑

X

|T (γ∗ + p → X)|2 = Disc T (γ∗ + p → γ∗ + p)

fq/N(xB, Q2) =
1

8π

∫
dr−e−imxBx−/2〈N(p)|q̄(r−)γ+W [r−, 0]q(0)|N(p)〉

∣∣∣∣ r+=0
r⊥∼1/Q

W [r−, 0] ≡ P exp

[
ig

2

∫ r−

0
dx−A+(x−)

]

∫
dp−

2π

i

p+p− − p2
⊥ −m2 + iε

e−ip−x+/2 =
θ(x+p+)

|p+| e−ip−x+/2
∣∣∣∣
p−=

p2
⊥+m2

p+

T T*
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T(p)

γ*(q)

T(p)

γ*(q)

D

k1

p2–k1
p2–k1

k2
k1 +

k2
k1 –p –k1p –

a Db Dc

k2
p2 +

k2

p2

p1

T(p)

γ*(q)

T(p)

γ*(q)

k1

Da Db Dc

k2p1+

p2

k2

p1

Spectator interactions do not
affect σDIS in Feynman gauge

Rescattering of struck quark with 
spectators within coherence length
does affect σDIS in Feynman gauge

Brodsky, PH, Marchal, Peigné, Sannino PRD 65 (2002) 114025

Spectator interactions
All partons in the target except the quark (or gluon which interacts with the 
virtual photon) are called spectators. Interactions between the spectators 
during the coherence time of the γ* can be neglected at leading twist in 
Feynman gauge.
This is seen from Light-Front (LF) time ordered diagrams. The three on-shell 
(imaginary) parts cancel each other in the left-hand model diagram:

r+ r+
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8Parton distribution with rescattering

Soft rescattering of the struck parton on the 
color field of the spectators gives rise to the 
“Wilson” line in the matrix element that gives 
the parton distribution

xB =
Q2

2p · q
=

Q2

2mν

r · q = 1
2 [r

+q− + r−q+]

fq/N(xB, Q2) =
1

8π

∫
dr−e−imxBx−/2〈N(p)|q̄(r−)γ+W [r−, 0]q(0)|N(p)〉

∣∣∣∣ r+=0
r⊥∼1/Q

q

p

q

p

0 r
...

γ* γ*
xB =

Q2

2p · q
=

Q2

2mν

r · q = 1
2 [r

+q− + r−q+]

fq/N(xB, Q2) =
1

8π

∫
dr−e−imxBx−/2〈N(p)|q̄(r−)γ+W [r−, 0]q(0)|N(p)〉

∣∣∣∣ r+=0
r⊥∼1/Q

W [r−, 0] ≡ P exp

[
ig

2

∫ r−

0
dx−A+(x−)

]

arises from rescattering of the struck quark on the color field of target spectators

where the Wilson line

– Only instantaneous Coulomb exchange A+ (specific to gauge theory)
– Wilson line ensures gauge invariance of the matrix element
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9Physical relevance of rescattering

The Wilson line was long thought to have no physical effects, since it is unity 
in LF (A+ = 0) gauge. However:
– Rescattering within the coherence length is expected to occur and to affect 
the DIS cross section in a non-trivial way
– The argument that spectator interactions are unimportant was shown only in 
Feynman gauge
– An explicit perturbative model calculation showed that the rescattering effect 
indeed shifts from the struck quark to spectators when going from Feynman to 
LF gauge

Rescattering implies that the parton distribution does not directly correspond 
to the LF wave function of the target in isolation:

Structure functions are not parton probabilities 
In fact, shadowing and diffraction, which contribute to fq/N(x) at leading twist, 
require rescattering.

Brodsky, PH, Marchal, Peigné, Sannino PRD 65 (2002) 114025
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10LF time ordering: x+ = x0 + x3 

In the usual “covariant” perturbation theory we describe particle propagation 
using 4-momenta. Thus the propagator of a scalar particle is

q⊥ =
√

1− yQ

r⊥ ∼ 1/Q

xB =
Q2

2p · q
=

Q2

2mν

r · q = 1
2 [r

+q− + r−q+]

∑

X

|T (γ∗ + p → X)|2 = Disc T (γ∗ + p → γ∗ + p)

fq/N(xB, Q2) =
1

8π

∫
dr−e−imxBx−/2〈N(p)|q̄(r−)γ+W [r−, 0]q(0)|N(p)〉

∣∣∣∣ r+=0
r⊥∼1/Q

W [r−, 0] ≡ P exp

[
ig

2

∫ r−

0
dx−A+(x−)

]

D(p) =
i

p2 −m2 + iε
=

i

p+p− − p2
⊥ −m2 + iε

The propagator goes “on the mass shell” as p2 → m2 : On-shell particles can 
propagate an infinite distance and register in detectors.

We can equally well describe propagation over a definite LF time x+, by 
Fourier transforming the propagator over the conjugate variable p– :

xB =
Q2

2p · q
=

Q2

2mν

r · q = 1
2 [r

+q− + r−q+]

fq/N(xB, Q2) =
1

8π

∫
dr−e−imxBx−/2〈N(p)|q̄(r−)γ+W [r−, 0]q(0)|N(p)〉

∣∣∣∣ r+=0
r⊥∼1/Q

W [r−, 0] ≡ P exp

[
ig

2

∫ r−

0
dx−A+(x−)

]

∫
dp−

2π

i

p+p− − p2
⊥ −m2 + iε

e−ip−x+/2 =
θ(x+p+)

|p+| e−ip−x+/2
∣∣∣∣
p−=

p2
⊥+m2

p+

D(x+, p+ , p⊥) =

Note that p– is now defined such that p2 = m2 : The particle is “always on-shell”
Ex: Derive the above expression for the  x+-ordered propagator.
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An arbitrary Feynman diagram can be LF time ordered by F.T. p– into x+ , 
allowing us to “follow” the time development of the process

p1

p2

p3

p4

p13

Covariant Feynman diagram: p13 = p1 – p3  (4-momenta conserved)

∫
dp−

2π

i

p+p− − p2
⊥ −m2 + iε

e−ip−x+/2 =
θ(x+p+)

|p+| e−ip−x+/2
∣∣∣∣
p−=

p2
⊥+m2

p+

[
φ(x+, x), π(x+, y)

]
= iδ3(x− y) ?

T = g2 (p1 + p3) · (p2 + p4)

(p1 − p3)2 + iε

LF time ordered diagrams: x+ increases from left to right: p– not conserved!

p1

p2

p3

p4

p13

p1

p2

p3

p4

p13+

∫
dp−

2π

i

p+p− − p2
⊥ −m2 + iε

e−ip−x+/2 =
θ(x+p+)

|p+| e−ip−x+/2
∣∣∣∣
p−=

p2
⊥+m2

p+

[
φ(x+, x), π(x+, y)

]
= iδ3(x− y) ?

T = g2 (p1 + p3) · (p2 + p4)

(p1 − p3)2 + iε

T = g2 (p1 + p3) · (p2 + p4)

(p1 − p3)2 + iε

p+
13 = p+

1 − p+
3

p−13 =
(p1⊥ − p3⊥)2

p+
13

∫
dp−

2π

i

p+p− − p2
⊥ −m2 + iε

e−ip−x+/2 =
θ(x+p+)

|p+| e−ip−x+/2
∣∣∣∣
p−=

p2
⊥+m2

p+

[
φ(x+, x), π(x+, y)

]
= iδ3(x− y) ?

T = g2 (p1 + p3) · (p2 + p4)

(p1 − p3)2 + iε

T = g2 (p1 + p3) · (p2 + p4)

(p1 − p3)2 + iε

p+
13 = p+

1 − p+
3

p−13 =
(p1⊥ − p3⊥)2

p+
13

#= p−1 − p−3

For p1+ > p3+ only the first diagram ≠ 0 :  

∫
dp−

2π

i

p+p− − p2
⊥ −m2 + iε

e−ip−x+/2 =
θ(x+p+)

|p+| e−ip−x+/2
∣∣∣∣
p−=

p2
⊥+m2

p+

[
φ(x+, x), π(x+, y)

]
= iδ3(x− y) ?

T = g2 (p1 + p3) · (p2 + p4)

(p1 − p3)2 + iε

T = g2 (p1 + p3) · (p2 + p4)

(p1 − p3)2 + iε

p+
13 = p+

1 − p+
3

p−13 =
(p1⊥ − p3⊥)2

p+
13

#= p−1 − p−3

∫
dp−

2π

i

p+p− − p2
⊥ −m2 + iε

e−ip−x+/2 =
θ(x+p+)

|p+| e−ip−x+/2
∣∣∣∣
p−=

p2
⊥+m2

p+

[
φ(x+, x), π(x+, y)

]
= iδ3(x− y) ?

T = g2 (p1 + p3) · (p2 + p4)

(p1 − p3)2 + iε

T = g2 (p1 + p3) · (p2 + p4)

(p1 − p3)2 + iε

p+
13 = p+

1 − p+
3

p−13 =
(p1⊥ − p3⊥)2

p+
13

#= p−1 − p−3

T =
g2

|p+
13|

(p1 + p3) · (p2 + p4)

p−1 − p−3 − p−13 + iε

Ex: Show the equivalence of the covariant and LF time-ordered expressions for T.
       Note that the external momenta  p1 ,..., p4 are on-shell.

x+ x+
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In general, a single covariant diagram breaks into a sum of several LF-ordered 
ones, where each line with p+ > 0 moves forward in x+.  The sum of diagrams 
gives equivalent results, but each LF-ordered diagram may contain spurious 
singularities, which cancel in their sum.

An advantage of LF-ordering is that it allows us to consider the particle content 
at a given instant of LF time. For example, a scalar may fluctuate into a pair:

p

p1

p2

T =
g

p− − p−1 − p−2

The lowest order in g expression 
for a two-scalar Fock state in a 
scalar particle

Note: None of the particles need to be on-shell, and LF energy is generally
     not conserved:  

T =
g

p− − p−1 − p−2

p− "= p−1 + p−2

The LF energy difference is, by the uncertainty principle, inversely related to 
the life-time of the Fock state

T =
g

p− − p−1 − p−2

p− "= p−1 + p−2

∼ 1/τ+
p p

τ+

p1

p2
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|N〉 =

∫ [
∏

i

dxi d2k⊥i

16π3

] [
ψuud(xi,k⊥i,λi)|uud〉

+ ψuudg(. . .)|uudg〉 + . . . + ψ···(. . .)|uudqq̄〉 + . . .
]

Fock states of the proton

LF time ordering allows us to define a snapshot of the proton in terms of its 
Fock states |uud>, ...., each constituent is taken at the same x+

The LF Hamiltonian (given by LQCD) species the x+ - development of each 
Fock state, it may propagate or turn into another Fock state through the 
creation and annihilation of quarks and gluons. 

The weight of each Fock state is given by its Fock amplitude ψ, which 
describes the momentum, spin, etc. distributions of the partons.

A full description of the proton implies giving all the Fock amplitudes ψ.
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Jyv!skyl!, Finland
March 24, 2007

 Stan Brodsky,  
SLAC

Novel QCD Phenomena

General remarks about orbital angular mo-
mentum

!R⊥

xi
!R⊥+!b⊥i

∑n
i
!b⊥i = !0⊥

∑n
i xi = 1

∑n
i=1(xi

!P⊥+ !k⊥i) = !P⊥

xi
!P⊥+ !k⊥i

∑n
i

!k⊥i = !0⊥

∑n
i xi = 1

General remarks about orbital angular mo-
mentum

Ψn(xi,!k⊥i, λi)

∑n
i=1(xi

!R⊥+!b⊥i) = !R⊥

xi
!R⊥+!b⊥i

∑n
i
!b⊥i = !0⊥

∑n
i xi = 1

P+, !P+

xiP
+, xi

!P⊥+ !k⊥i

ẑ

!L = !R× !P

!Li = (xi
!R⊥+!b⊥i)× !P

!"i = !b⊥i × !k⊥i

!"i = !Li − xi
!R⊥ × !P = !b⊥i × !P

Light-Front Wavefunctions

P+ = P0 + Pz

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

ū

E′ = E − ν, &q

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

Invariant under boosts!  Independent of P
! 

5

A(σ,∆⊥) = 1
2π

∫
dζe

i
2σζM(ζ,∆⊥)

P+, $P⊥

xiP
+, xi

$P⊥+ $k⊥i

ζ = Q2

2p·q

ẑ

$L = $R× $P

$Li = (xi
$R⊥+$b⊥i)× $P

F.T. < 0|ψ(y1)ψ(y2)ψ(y3)|p > |τi=0

φπ(x, Q) = P+
π

∫ dz−
4π eiπP+

π z−/2

< 0|ψ(0) γ+γ5

2
√

2nC
ψ(z)|π >(Q) |z+=&z⊥=0

p4
T

d3σ
d3p/E

p8
T

d3σ
d3p/E

d3σ
d3p/E

= AF (xT )
pn
T
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LF wave functions allow to describe hadrons in arbitrary motion using the 
same wave function.
– They are closely related to hard scattering processes (e.g., DIS)

Light-Front wave functions
xB =

Q2

2p · q
=

Q2

2mν

r · q = 1
2 [r

+q− + r−q+]

fq/N(xB, Q2) =
1

8π

∫
dr−e−imxBx−/2〈N(p)|q̄(r−)γ+W [r−, 0]q(0)|N(p)〉

∣∣∣∣ r+=0
r⊥∼1/Q

– For non-relativistic motion they coincide with equal-time wave functions
The constituents do not move in the time a light-ray connects them 

– Are usually considered in A+ = 0 (LF) gauge, to eliminate unphysical dof’s
Wave functions are not physically measureable: They are gauge-dependent

– Are often referred to as “infinite momentum frame” wf’s, since they 
   coincide with  equal-time (x0 = 0) wf’s in the p+  → ∞ frame  
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16Vagaries of ordering in x+

In x+-ordered diagrams p+ and p⊥ are conserved, but p– ≡ (p⊥2 + m2)/p+ is not
e

 e–

!

k
1

k
2

k
3

The conservation of p+ and the requirement that 
only p+ > 0 lines move forward in x+ 
implies that particles are not created from nothing:
k1

+ + k2
+ + k3

+ = 0 and ki
+  > 0 are not consistent

Consequently:      HLF | 0〉  = 0   
The trivial (empty) vacuum is an exact eigenstate of the full Hamiltonian!

This is too good to be true: Where did the QCD condensates go?
Apparently into zero-modes, having ki

+  = 0

An x+  = 0 surface allows causal connections using signals with
the speed of light: E.g., photons with k+  = 0   but k– ≠ 0 

Quantization on an LF surface is not quite OK: 

xB =
Q2

2p · q
=

Q2

2mν

r · q = 1
2 [r

+q− + r−q+]

fq/N(xB, Q2) =
1

8π

∫
dr−e−imxBx−/2〈N(p)|q̄(r−)γ+W [r−, 0]q(0)|N(p)〉

∣∣∣∣ r+=0
r⊥∼1/Q

W [r−, 0] ≡ P exp

[
ig

2

∫ r−

0
dx−A+(x−)

]

∫
dp−

2π

i

p+p− − p2
⊥ −m2 + iε

e−ip−x+/2 =
θ(x+p+)

|p+| e−ip−x+/2
∣∣∣∣
p−=

p2
⊥+m2

p+

[
φ(x+, x), π(x+, y)

]
= iδ3(x− y) ?

x+
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The “physical” LF gauge A+ = 0 has no ghosts, but a gluon propagator
 which is singular at k+ = 0:

dµν
LF (k) =

i

k2 + iε

[
−gµν +

nµkν + kµnν

k+

]
, n·A = A+ = 0

The k+ = 0 pole makes x+ - ordering delicate:  θ(k+ x+)/k+

q

p

q

p

0 r
...

γ* γ*
This is especially true for DIS, where
in the Bjorken limit the rescattering
propagators contribute for k+ ∼ 1/ν → 0 

Using x+-time ordering in DIS with A+ = 0 
gauge introduces many spurious singularities k+ ≈ 0

Vagaries of ordering in x+ (II)

Also the renormalization procedure is complicated by x+-time ordering
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18The two views of DIS
The LF time (x+) development in DIS depends on the direction of the photon 
momentum q, due to the θ(x+ p+) in the quark propagators:

e
e

quark

q

qz < 0:  q+ = –mxB qz > 0:  q+ = 2ν

e
e

antiquark

Virtual photon scatters on a
quark in the target with k+ = mxB

Virtual photon splits into a quark-
antiquark pair. The antiquark has
a finite k+ in the target rest frame

σDIS given ≈ by probability for
the quark in the target wf.

q

σDIS given by the scattering of the 
asymmetric qq pair in the target–

The two views are related by a rotation of 180°, but rotations are 
not kinematic (explicit) symmetries in the LF matrix element.

“Target rest frame”“Infinite momentum frame”



Paul Hoyer Jlab-HUGS June 2007

19   Aymmetric        vs.       Symmetric  pairs

q+ ≈ 2ν q+ ≈ 2ν k+≈ 2ν 1

k+≈ ΛQCD 2

k+≈ ν 1

k+≈ ν 2

The virtual photon fluctuates into a similarly short-lived quark pair: Δx+ ~ 1/Δk–  

k   ≈ ΛQCD ⊥

k   ≈ Q⊥

k– + k– ≥  q– ≈ mxB1 2 k– = (k⊥ + m2)/k+2
with

The asymmetric pair has 
large transverse size: 
 r⊥ ~ 1/k⊥   ≈ 1/ΛQCD 
It has a large cross section, 
but the splitting probability 
is ~ 1/Q2

The symmetric pair has small 
transverse size:  r⊥ ~ 1/k⊥   ≈ 1/Q
Its cross section is ~ 1/Q2 (due 
to color transparency!) but the 
splitting probability is O(1)

γ* γ*

σ(γ*q → q) ~ 1/Q2 σ(γ*g → qq) ~ αs /Q2

Ex: How far (in x+) before the target does the virtual photon split into a quark pair?
       Use typical kinematics at Jlab and Hera.
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20Rescattering probability

q+ ≈ 2ν q+ ≈ 2ν k+≈ 2ν 1

k+≈ ΛQCD 2

k+≈ ν 1

k+≈ ν 2k   ≈ ΛQCD ⊥

k   ≈ Q⊥γ* γ*

σ(rescat) ~ Psplit ⋅ σ2(qq) ∝1/Q2 σ(rescat) ~ Psplit ⋅ σ2(qq) ∝1/Q4

Rescattering probability from the large (asymmetric) pair is independent of  Q2, 
whereas that from the compact pair is suppressed by 1/Q2

Recall: Longitudinal coherence length LI ~ 1/mxB  remains finite in the scaling 
limit, hence does not depend on Q2 at fixed xB .

Note: Soft (re-)scattering from asymmetric state influences hard process!
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c

d

QCD factorization in hard collisions

hC/c

C

• One active parton in each hadron
• No interactions with spectators
• Hard subprocess is pointlike

It ain’t quite so!

Spectators influence the 
hard subprocess, even at 
“infinite hardness”.

In certain situations the 
spectator effects are crucial.

Spec-
tators

Spec-
tators
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Universality of fragmentation in nuclear matter

10 50
ν GeV

z > 0.2

Hadronization is independent of  target size in DIS on nuclei when the struck 
quark has high energy ν

e

e

Nh

Ex: Estimate the formation length of a pion with z = 0.5 at ν = 50 GeV.
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ν

νShadowing in ν A → ν +X

Nucleus A

Shadowing requires at least 
two neutrino interactions 
in the nucleus!

How can the neutrino, 
which penetrates light-
years of matter,“know” 
that there are nucleons in 
front of the one it hits?
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Diffractive DIS: e + p → e + X + p

H1Intuitive picture of DIS: A color string 
extending from the struck quark to the target 
fills the rapidity interval with hadrons:

DDIS: No hadrons emerge in an extended 
 rapidity region.

DDIS/DIS ≈ 10 %, independent of Q2 

DDIS requires color singlet exchange,
i.e., at least two partons from target |P

DDIS

DDIS
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ν
Nucleus A

Z
ν qg

q–

Shadowing in ν A → ν +X

X

The neutrino interacts via its
(rare) qq Fock component

Once produced, the qq Fock state interacts via QCD, but we still need: 

#1: Large sized qq pairs, to avoid suppression from color transparency

#2: Coherence: For the soft qq interactions to affect the hard scattering

Hard subprocess

–

–

–

–
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Shadowing dynamics

γ*(ν,Q2)

PI

γ*(ν,Q2)

+

Msingle Mdouble ~ i ⋅ i Msingle

Negative interference between single and double scattering due to
factor i2 = -1 from elastic scattering and on-shell intermediate state
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27How about the antishadowing and EMC effects?

The dip-bump structure in the A-dependence
may be understood as simply arising from
the Fourier-transform in the parton distribution:

fq/N(xB, Q2) =
1

8π

∫
dx−e−ixBp+x−/2〈N(p)|q̄(x−)γ+ W [x−, 0]q(0)|N(p)〉x+=0

The matrix element in coordinate space, x– = x0 – x3 , has only shadowing
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Nuclear Dependence of Parton Distributions

The parton distribution in 
momentum space fq/A(xB) has 
a complicated A-dependence:

When transformed to coordinate (x–) 
space the A-dependence is much 
simpler:

x

x

Within the experimental resolution,
data shows only shadowing when
plotted in coordinate space, from

z = t ≈ 2.5 fm

PH and M. Vänttinen, Z.Phys. C74 (1997) 113
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x

x

B

Error estimate in 
coordinate space

Reconstruction of RC(xB), assuming
no nuclear effect in coordinate space
                    for x – < w
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Compact qq states: Coherent J/ψ production

c

γ

PI

c

–
J/ψ

Nucleus A

pT2 (GeV2)

γ+Fe → J/ψ + Fe
120 GeV

Coherent
peak

In γ+A → J/ψ + A the charm quark
pair is produced as a compact color
singlet configuration, r⊥  ~ 1/mc

The compact quark pair can scatter
coherently on all A nucleons, giving
an enhanced production on nuclei:

σcoh ~ Aα  ,   α  = 1.40 ± 0.04

Sokoloff et al, PRL 57 (1986) 3003

_
Reality check...


