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Structure Functions at Low Q  2



quark-hadron (Bloom-Gilman) duality          

Intriguing phenomena have been observed in low Q
structure functions

2

surprisingly small higher twist effects in (low) 
moments of structure functions

Description of low Q   dynamics requires understanding 
“transition” region from resonances to scaling

2

target mass corrections (TMC)

QCD moments of structure functions

how do resonances combine to form scaling function?
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As W decreases,  DIS region gives way to region 
dominated by nucleon resonances

“DIS”

resonance
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Fig. 9. Early proton !W2 structure function data in the resonance region, as a function of "′, compared to a smooth fit to the
data in the scaling region at largerQ2. The resonance data were obtained at the indicated kinematics, withQ2 in GeV2, for the

longitudinal to transverse ratio R = 0.18. (Adapted from Ref. [3].)

perturbative QCD (as will be discussed in Section 4). Nevertheless, the astute observations made by

Bloom and Gilman are still valid, and may be summarized as follows:

I. The resonance region data oscillate around the scaling curve.

II. The resonance data are on average equivalent to the scaling curve.

III. The resonance region data “slide” along the deep inelastic curve with increasingQ2.

These observations led Bloom and Gilman to make the far-reaching conclusion that “the resonances are

not a separate entity but are an intrinsic part of the scaling behavior of !W2” [2].

In order to quantify these observations, Bloom and Gilman drew on the work on duality in hadronic

reactions to determine a FESR equating the integral over ! of !W2 in the resonance region, to the integral

over "′ of the scaling function [2],

2M

Q2

∫ !m

0

d! !W2(!, Q
2) =

∫ 1+W 2
m/Q2

1

d"′!W2("
′) . (63)

Here the upper limit on the ! integration, !m = (W 2
m −M2+Q2)/2M , corresponds to the maximum value

of "′ = 1 + W 2
m/Q2, where Wm ∼ 2GeV, so that the integral of the scaling function covers the same

range in "′ as the resonance region data. FESR (63) allows the area under the resonances in Fig. 9 to
be compared to the area under the smooth curve in the same "′ region to determine the degree to which
the resonance and scaling data are equivalent. A comparison of both sides in Eq. (63) for Wm = 2GeV

showed that the relative differences ranged from∼ 10%atQ2=1GeV2, to!2%beyondQ2=2GeV2 [3],
thus demonstrating the near equivalence on average of the resonance and deep inelastic regimes (point II

above). Using this approach, Bloom andGilman’s quark–hadron duality was able to qualitatively describe

the data in the range 1!Q2!10GeV2.

scaling curve

resonance - scaling duality in
proton                 structure function νW2 = F2
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“Bloom-Gilman duality”

2

Average over
(strongly Q   dependent)
resonances 
     Q   independent
     scaling function

2

≈

Jefferson Lab (Hall C)

Resonance-DIS transition



Bloom-Gilman duality

Average over (strongly Q  dependent) resonances 
     Q   independent scaling function2

2

≈

Finite energy sum rule for eN scattering
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Fig. 13. Proton F2 structure function in the ! (top) and S11 (bottom) resonance regions from Jefferson Lab Hall C, compared

with the scaling curve from Ref. [7]. The resonances move to higher " with increasing Q2, which ranges from ∼ 0.5GeV2

(smallest " values) to ∼ 4.5GeV2 (largest " values).

higherQ2 values. It is difficult to evaluate precisely the equivalence of the two ifQ2 evolution [60] is not

taken into account. Furthermore, the resonance data and scaling curves, although at the same " or #′, are
at different x and sensitive therefore to different parton distributions. A more stringent test of the scaling

behavior of the resonances would compare the resonance data with fundamental scaling predictions for

the same low-Q2, high-x values as the data.

Such predictions are now commonly available from several groups around the world, for instance,

the Coordinated Theoretical-Experimental Project on QCD (CTEQ) [61]; Martin, Roberts, Stirling, and

Thorne (MRST) [62]; Gluck, Reya, andVogt (GRV) [63]; and Blümlein and Böttcher [64], to name a few.

These groups provide results from global QCD fits to a full range of hard scattering processes—including

lepton–nucleon deep inelastic scattering, prompt photon production, Drell–Yan measurements, jet pro-

duction, etc.—to extract quark and gluon distribution functions (PDFs) for the proton. The idea of such

global fitting efforts is to adjust the fundamental PDFs to bring theory and experiment into agreement

for a wide range of processes. These PDF-based analyses include pQCD radiative corrections which give

rise to logarithmicQ2 dependence of the structure function. In this report, we use parameterizations from

all of these groups, choosing in each case the most straightforward implementation for our needs. It is

not expected that this choice affects any of the results presented here.

Local Bloom-Gilman duality

∆

S11

ξ =
2x

1 +
√

1 + 4M2x2/Q2
Nachtmann scaling variable



Parton kinematics

Nachtmann
scaling variable
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2

q {

ξ =
p+

P+
=

p0 + pz

M

light-cone fraction of target’s momentum carried by parton
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measurements at higher Q2 —data which are planned but
not yet available [24].

Figure 3 shows the same duality integral ratio as in
Fig. 2, but here obtained more locally, in restricted j
ranges around the three prominent resonance enhancement
regions observed in inclusive nucleon resonance electro-
production, i.e., around the masses of the D P33(1232)
(1.3 # W2 , 1.9 GeV2), the S11(1535) (1.9 # W2 ,
2.5 GeV2), and the F15(1680) (2.5 # W2 , 3.1 GeV2)
resonances, and in the higher W2 region above these
(3.1 # W2 # 3.9 GeV2). The uncertainties shown were
computed as in Fig. 2. The latter higher mass ratios,
which compare near deep inelastic data to deep inelastic
data are essentially one and similar to the results in Fig. 2.
It has been pointed out [25] that the D resonance form
factor decreases faster in Q2 than the leading order pertur-
bative QCD Q24 behavior which the scaling curve should
reflect. A similar observation may possibly be made from
Fig. 3 where the ratio (res!DIS) drops below unity in the
region 1 , Q2 , 3.5 "GeV!c#2. The S11 region, on the
other hand, appears systematically higher than the others.
Generally, however, the lower mass resonances appear to
average to the deep inelastic strength, manifesting duality
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FIG. 3. The ratios of integrated data strength in limited ranges
of j around the prominent resonance enhancement mass regions,
to the strength from the resonance fit (stars) and NMC (squares)
scaling curves integrated over the same j regions.

behavior even in these limited ranges of j at low Q2

where higher twist effects might be expected to be large.
By utilizing new inclusive data in the resonance region

at large x, it has been possible to revisit quark-hadron dual-
ity experimentally for the first time in nearly three decades.
These new data, combined with the extensive global mea-
surements of the F2 structure function from deep inelastic
scattering, allow for precision tests of duality in electron-
nucleon scattering. The original duality observations are
verified, and the QCD moment explanation indicates that
higher twist contributions to the n ! 2 moment of the F2
structure function are small or canceling, even in the low
Q2 regime of Q2 $ 0.5 "GeV!c#2. Duality is observed
to hold for local resonance enhancements individually, as
well as for the entire 1 # W2 # 4 GeV2 resonance region.
In all cases, duality appears to be a nontrivial dynamic
property of the nucleon structure function.

This work is supported in part by research grants from
the National Science Foundation. C. E. K. and R. E. wish
to thank A. Radyushkin for many useful discussions.
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~10% agreement 
for Q   > 1 GeV22

NMC fit

JLab
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Integrated strength



Duality in QCD

Considerable data exists in resonance region,  W < 2 GeV

common wisdom:  pQCD analysis not valid in resonance region

in fact:  partonic interpretation of moments  does  include
resonance region

Resonances are an integral part of deep inelastic
structure functions!

implicit role of quark-hadron duality



Proton      momentsF2

F
p

2
At                     ,  ~ 70%  of lowest moment of      Q2

= 1 GeV
2

comes from W < 2 GeV

relative contribution
of resonance region
to n-th moment n



Ji, Unrau, 
Phys. Rev. D 52 (1995) 72

BUT resonances and DIS continuum conspire to
produce only  ~ 10%  higher twist contribution!

Proton      momentsF2

2 2

total
- leading twist



Duality in QCD
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in general,              transition matrix element very complicated N → X

correctionsM2/Q2



2

2

Parton model: F2(x, Q2) = x
∑

q

e2

q
q(x, Q2)

probability to find quark type “q” in nucleon,
carrying (light-cone) momentum fraction x



Mn(Q2) =

∫ 1

0

dx xn−2 F2(x, Q2)

= A(2)
n

+
A

(4)
n

Q2
+

A
(6)
n

Q4
+ · · ·

Operator product expansion

expand moments of structure functions
in powers of 1/Q2

Duality in QCD

τ

matrix elements of operators with 
specific “twist”

τ = dimension − spin



(a) (b) (c)

τ = 2

single quark
scattering

τ > 2

qq and qg
correlations

higher twistleading twist



Mn(Q2) =
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Operator product expansion

expand moments of structure functions
in powers of 1/Q2

If moment      independent of Q≈
2

higher twist terms            smallA
(τ>2)
n

Duality in QCD



Mn(Q2) =
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dx xn−2 F2(x, Q2)

= A(2)
n

+
A

(4)
n

Q2
+

A
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de Rujula, Georgi, Politzer,
Ann. Phys. 103 (1975) 315

Duality ⇐⇒ suppression of higher twists

Operator product expansion

expand moments of structure functions
in powers of 1/Q2

Duality in QCD



Applications of duality

If higher twists are small (duality “works”)

can use single-parton approximation
to describe structure functions

extract leading twist parton distributions

If duality is violated, and if violations are small

can use duality violations to extract higher 
twist matrix elements

learn about nonperturbative
qq or qg correlations 



DIS at finite Q2



Formulation in terms of usual (“Cornwall-Norton”) moments 
mixes operators of same twist,  but different spin, n

irrelevant at large      , but important 
Q2/ν2

= 4M2x2/Q2

Q2

at intermediate

“target mass corrections” associated with 
higher spin operators (trace terms in OPE)

Nachtmann (1973) constructed moments in which only
operators with spin n contribute to the n-2 moment of
structure function

automatically accounts for kinematical
finite             effectsM2/Q2



Georgi, Politzer (1976) 
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Operator product expansion

local operators

Nachtmann moments



n-th Nachtmann moment of      structure functionF2

µn
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0

dx
ξn+1

x3

(
3 + 3(n + 1)r + n(n + 2)r2

(n + 2)(n + 3)

)
F2(x, Q2)

n-th moment of PDFs at finite Q2

Relate Nachtmann and CN moments

µn

2 (Q2) = Mn
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mixing between lower & higher CN moments



=
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n-th Cornwall-Norton moment of       
structure function
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take inverse Mellin transform (+ tedious manipulations)

r =
√

1 + 4x2M2/Q2ξ =
2x

1 + r

... similarly for other structure functions F1, FL

FGP
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target mass corrected structure function

Georgi-Politzer
prescription
for TMCs



no TMCTMC

numerically...

TMCs significant at large          , especially for x2/Q2
FL

JLab Hall C

non-zero at x=1 !



Threshold problem

if                          at largeF (y) ∼ (1 − y)β y

then since ξ0 ≡ ξ(x = 1) < 1

F (ξ0) > 0

is this physical?

problem with GP formulation?

inverse Mellin transform (+ tedious manipulations)

r =
√

1 + 4x2M2/Q2ξ =
2x

1 + r

... similarly for other structure functions F1, FL
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...recall

FGP
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Possible solutions

Johnson/Tung - modified threshold factor

Nachtmann moment

µn
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∫ 1
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dx
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3 + 3(n + 1)r + n(n + 2)r2

(n + 2)(n + 3)

)
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n → ∞, Q2
fixed

µn
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0 (Q2) µ̃n
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“regularized” amplitudes
(threshold-independent)

n fixed, Q2
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µn
2 (Q2) → (lnQ2/Λ2)−λn An

An =

∫ 1

0

dξ ξn F (ξ)



Possible solutions

Johnson/Tung - modified threshold factor

Nachtmann moment

µn

2 (Q2) =

∫ 1

0

dx
ξn+1

x3

(
3 + 3(n + 1)r + n(n + 2)r2

(n + 2)(n + 3)

)
F2(x, Q2)

Bitar, Johnson, Tung
PLB 83B (1979) 114

ansatz µn
2 (Q2) = ξn

0 (Q2) (lnQ2/Λ2)−λn An

consistent with asymptotic pQCD behavior

not unique!



Possible solutions

Johnson/Tung - modified threshold factor

moreover, if identify      with An

µn
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0 (Q2) Mn
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cf. exact expression
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Possible solutions
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Kulagin/Petti - expand expressions in 1/Q  2

has correct threshold behavior

Possible solutions

Kulagin/Petti - expand expressions in 

Kulagin, Petti

hep-ph/0412425

1/Q  2

that the target mass corrected inelastic structure functions FTMC
2 remain finite as x → 1

even if the LT terms vanish in this limit. Clearly, the region x close to 1 is beyond the appli-
cability of Eqs.(23). However, in the applications to nuclear structure functions at large x it
is important to meet the threshold condition. One possible way to deal with this problem is
to expand Eqs.(23) in power series in Q−2 and keep a finite number of terms. In particular,
keeping the LT and the 1/Q2 term we have

FTMC
T (x, Q2) = F LT

T (x, Q2) +

x3M2

Q2

(
2

∫ 1

x

dz

z2
F LT

2 (z, Q2) − ∂

∂x
F LT

T (x, Q2)

)
, (24a)

FTMC
2 (x, Q2) =

(
1 − 4x2M2

Q2

)
F LT

2 (x, Q2) +

x3M2

Q2

(
6

∫ 1

x

dz

z2
F LT

2 (z, Q2) − ∂

∂x
F LT

2 (x, Q2)

)
, (24b)

xFTMC
3 (x, Q2) =

(
1 − 2x2M2

Q2

)
xF LT

3 (x, Q2) +

x3M2

Q2

(
2

∫ 1

x

dz

z2
zF LT

3 (z, Q2) − ∂

∂x
xF LT

3 (x, Q2)

)
. (24c)

In this approximation the structure functions have a correct threshould behavior and vanish
in the limit of x → 1, provided that the LT terms and their derivatives vanish in this limit.

The target mass corrections should also be applied to the HT terms in the higher order
terms in the twist expansion (20). For this reason we do not consider 1/Q4 terms in the
TMC formula, which are small in the considered kinematical range. We also note, that the
target mass corrections for an off-shell target, i.e. when p2 #= M2, should be treated as part
of the nuclear effects and will be discussed in Sect. IVA6.

B. Structure function phenomenology

The twist expansion and PDFs as universal, process-independent characteristics of the
target are at the basis of extensive QCD phenomenology of high-energy processes. In phe-
nomenological studies, the PDFs are extracted from QCD global fits. A number of such
analyses are available [39, 40, 41]. In our studies of nuclear data described in Sect. VF
to VID we use the results by Alekhin [39] 2 who provides the set of the nucleon PDFs
obtained with coefficient and splitting functions calculated to the NNLO approximation.
Furthetmore, the HT terms and the PDF uncertainties have also been evaluated in [39].

It should be also remarked that the twist expansion and perturbative QCD apparently
breaks down at low Q2. Furthermore, the conservation of electromagnetic current requires
the structure function F2 to vanish as Q2 for Q2 → 0. The data seem to indicate the
presence of a transition region between perturbative and non-perturbative regimes at Q2

about 1 GeV2. In our studies of nuclear effects in the structure functions some data points

2 In our analysis we use PDFs obtained from new fits optimized in the low Q2 region and including additional

data with respect to [39]. This extraction of PDFs also takes into account the nuclear corrections to D

data described in the present paper (Section VG). Results from the new fits will be reported elsewhere.

10

has correct threshold behavior

more limited range of applicability (not too low Q  ) ?2

Possible solutions

Kulagin/Petti - expand expressions in 
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that the target mass corrected inelastic structure functions FTMC
2 remain finite as x → 1

even if the LT terms vanish in this limit. Clearly, the region x close to 1 is beyond the appli-
cability of Eqs.(23). However, in the applications to nuclear structure functions at large x it
is important to meet the threshold condition. One possible way to deal with this problem is
to expand Eqs.(23) in power series in Q−2 and keep a finite number of terms. In particular,
keeping the LT and the 1/Q2 term we have
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In this approximation the structure functions have a correct threshould behavior and vanish
in the limit of x → 1, provided that the LT terms and their derivatives vanish in this limit.

The target mass corrections should also be applied to the HT terms in the higher order
terms in the twist expansion (20). For this reason we do not consider 1/Q4 terms in the
TMC formula, which are small in the considered kinematical range. We also note, that the
target mass corrections for an off-shell target, i.e. when p2 #= M2, should be treated as part
of the nuclear effects and will be discussed in Sect. IVA6.

B. Structure function phenomenology

The twist expansion and PDFs as universal, process-independent characteristics of the
target are at the basis of extensive QCD phenomenology of high-energy processes. In phe-
nomenological studies, the PDFs are extracted from QCD global fits. A number of such
analyses are available [39, 40, 41]. In our studies of nuclear data described in Sect. VF
to VID we use the results by Alekhin [39] 2 who provides the set of the nucleon PDFs
obtained with coefficient and splitting functions calculated to the NNLO approximation.
Furthetmore, the HT terms and the PDF uncertainties have also been evaluated in [39].

It should be also remarked that the twist expansion and perturbative QCD apparently
breaks down at low Q2. Furthermore, the conservation of electromagnetic current requires
the structure function F2 to vanish as Q2 for Q2 → 0. The data seem to indicate the
presence of a transition region between perturbative and non-perturbative regimes at Q2

about 1 GeV2. In our studies of nuclear effects in the structure functions some data points

2 In our analysis we use PDFs obtained from new fits optimized in the low Q2 region and including additional

data with respect to [39]. This extraction of PDFs also takes into account the nuclear corrections to D

data described in the present paper (Section VG). Results from the new fits will be reported elsewhere.
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work with     dependent PDFsξ0

n-th moment       of distribution function An

An =

∫ ξmax

0

dξ ξn F (ξ)

Steffens, WM
PRC 73 (2006) 055202

what is        ?ξmax

GP use                                unphysicalξmax = 1, ξ0 < ξ < 1

strictly, should use                               ξmax = ξ0

Alternative solution



what is effect on phenomenology?

try several  “toy distributions”

q(ξ) = N ξ−1/2 (1 − ξ)3 , ξmax = 1

standard TMC (“sTMC”)

modified TMC (“mTMC”)

q(ξ) = N ξ−1/2 (1 − ξ)3 Θ(ξ − ξ0), ξmax = ξ0

threshold dependent (“TD”)

qTD(ξ) = N ξ−1/2 (ξ0 − ξ)3 , ξmax = ξ0

Alternative solution
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FIG. 3: The x dependence of the F2 structure function at Q2 = 1 GeV2 (upper) and 5 GeV2 (lower). The effects of TMCs
on the (input) scaling distribution (dotted curve) are illustrated for the sTMC (dashed) and mTMC (double-dot–dashed)
prescriptions, and compared with the effects on the (input) TD-distribution ξqTD(ξ) (dot-dashed) using the TD approach
(prescription C, solid).

the sTMC and mTMC prescriptions, the corrected structure function is significantly larger in magnitude than for the
TD prescription at intermediate and large x. For the sTMC case in particular, it is also seen to approach a nonzero
value in the x → 1 limit. This result suggests that the evaluation of the twist-two part of the longitudinal structure
function at low Q2 may also need to be reassessed in phenomenological analyses, especially at intermediate and large
x.

TMCs in F2

correct threshold behavior for  “TD” correction

non-zero
at x = 1
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the sTMC and mTMC prescriptions, the corrected structure function is significantly larger in magnitude than for the
TD prescription at intermediate and large x. For the sTMC case in particular, it is also seen to approach a nonzero
value in the x → 1 limit. This result suggests that the evaluation of the twist-two part of the longitudinal structure
function at low Q2 may also need to be reassessed in phenomenological analyses, especially at intermediate and large
x.

TMCs in F2

effect small at higher Q2
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from 0 to 1 (specifically, in the integrals for An, H(ξ) and G(ξ)). Here the normalization N ensures that the
distribution integrates to unity. We denote this prescription the “standard TMC” (sTMC).

(B) Integrate a modified distribution which vanishes for ξ > ξ0, as implied by Eq. (7)1:

q(ξ) = N ξ−1/2(1 − ξ)3 Θ(ξ − ξ0) . (19)

We denote this prescription the “modified TMC” (mTMC).
(C) Use a “threshold dependent” (TD) quark distribution which vanishes in the physical limit:

qTD(ξ) = N ξ−1/2(ξ0 − ξ)3 . (20)
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FIG. 1: Ratio of the n = 2 Nachtmann moment of the F2 structure function and the n = 2 moment of the quark distribution,
as a function of Q2. The curves correspond to prescriptions A [“sTMC”] (dotted), B [“mTMC”] (dashed) and C [“TD”] (solid).

Note that because of the upper limit in Eq. (7), An itself will be M2/Q2 dependent for prescriptions B and C. The
results for the ratio µn

2/An of the n = 2 moments are displayed in Fig. 1 for the three cases, with prescriptions A, B
and C corresponding to the dotted, dashed and solid curves, respectively. Comparing the sTMC and mTMC results,
one can see a reduced Q2 dependence when the integrals are restricted to ξ < ξ0. However, a much more dramatic
change occurs when the quark distribution is constrained to vanish at ξ0. This renders the Nachtmann moment almost
equal to the moment of the quark distribution for virtually all Q2 considered. Certainly for Q2 > 1 GeV2 there is no
visible deviation of the ratio from unity. Even for very small Q2, Q2 ∼ 0.3 GeV2, the ratio differs from unity by only
∼ 0.7% (of course the OPE itself may not be valid at such low values of Q2).

Similarly, the ratios for the n = 4 and n = 6 moments are shown in Fig. 2. The deviation of the ratio from unity
for the sTMC approach is between 10%− 20% for Q2 <

∼ 1 GeV2, while that for the modified TMC with prescription
B is of the order of 5% over the same Q2 region. On the other hand, for the threshold dependent prescription C, the
deviation from unity remains around 1% even at these low Q2 values.

A consequence of prescription C is that the moments of the parton distribution are Q2 dependent. This seems to
be an inevitable consequence if the Nachtmann moments of the structure function are to be equal to the moments of
the parton distribution for all Q2. Note that this Q2 dependence is not of higher twist or perturbative QCD origin,
but arises solely from kinematics. Nevertheless, this avoids the more serious problems which arise within the sTMC

1 We believe this was also the implication of De Rújula et al. [11]

Nachtmann     momentsF2

moment of structure function agrees with 
moment of PDF to 1% down to very low Q2
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FIG. 2: Ratios of the n = 4 (upper graph) and n = 6 (lower graph) Nachtmann moment of the F2 structure function and the
corresponding moments of the quark distribution, as a function of Q2. The curves are as in Fig. 1.

approach (prescription A), where the Nachtmann moments below Q2 ∼ 1 GeV2 start to deviate significantly from the
moments of the quark distributions. In addition, in the sTMC formulation one is faced with the so-called “threshold
problem”. Namely, if the moments An of the quark distributions are Q2 independent, then one should have:

∫ 1

0
dξ ξn F (ξ, Q2

1) =

∫ 1

0
dξ ξn F (ξ, Q2

2) (21)

for any two momentum scales Q2
1 and Q2

2. Since F (ξ, Q2) must vanish in the kinematically forbidden region ξ > ξ0,
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approach (prescription A), where the Nachtmann moments below Q2 ∼ 1 GeV2 start to deviate significantly from the
moments of the quark distributions. In addition, in the sTMC formulation one is faced with the so-called “threshold
problem”. Namely, if the moments An of the quark distributions are Q2 independent, then one should have:

∫ 1

0
dξ ξn F (ξ, Q2

1) =

∫ 1

0
dξ ξn F (ξ, Q2

2) (21)

for any two momentum scales Q2
1 and Q2

2. Since F (ξ, Q2) must vanish in the kinematically forbidden region ξ > ξ0,

Nachtmann     momentsF2

higher moments show much weaker Q2

dependence than sTMC & mTMC prescriptions
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approach (prescription A), where the Nachtmann moments below Q2 ∼ 1 GeV2 start to deviate significantly from the
moments of the quark distributions. In addition, in the sTMC formulation one is faced with the so-called “threshold
problem”. Namely, if the moments An of the quark distributions are Q2 independent, then one should have:

∫ 1

0
dξ ξn F (ξ, Q2

1) =

∫ 1

0
dξ ξn F (ξ, Q2

2) (21)

for any two momentum scales Q2
1 and Q2

2. Since F (ξ, Q2) must vanish in the kinematically forbidden region ξ > ξ0,

Nachtmann     momentsF2

extract PDFs from structure function data
at lower Q2

µn

2 (finite Q2)

An(finite Q2)
=

µn

2 (Q2
→ ∞)

An(Q2
→ ∞)



Summary

Target mass corrections important at low Q2

New TMC formulation avoids “threshold problem”

much weaker      dependence of momentsQ2

introduces    and     dependent PDFsξ ξ0

Remarkable confirmation of quark-hadron duality in
structure functions  

higher twists “small” down to low Q2
2(~ 1 GeV  )

OPE  “organizes” duality violations in terms of higher twists 
but need quark models to understand origin of resonance 
cancellations  



The End


