Nuclear Structure and Short-Range Correlations (Day 1) Or Hen – MIT

Hampton University Graduate School (HUGS), June 6th 2017, JLab, Newport-News VA. Laboratory for Nuclear Science @

Hen/Lab

Course Outline

Day I: Overview of Nuclear Systems and EM Probes.

Day II: Nuclear Structure. (Short / Long Range) (Experiment / Theory)

Day III: Cross Connections.

(QCD in Nuclei: Modification and Transparency) (Contact Formalism and Short-Range Universality) (Neutrino Physics) (Neutron Stars)

Course Outline

Day I: Overview of Nuclear Systems and EM Probes.

Day II: Nuclear Structure. (Short / Long Range) (Experiment / Theory)

Day III: Cross Connections.

(QCD in Nuclei: Modification and Transparency) (Contact Formalism and Short-Range Universality) (Neutrino Physics) (Neutron Stars)

Course Outline

Day I: Overview of Nuclear Systems and EM Probes.

After today's overview, I want to hear from you what you want to learn!

Theory / Detectors / High energy / low energy

Modern nuclear physics: From nothing to everything

This Course: Two Systems and Their Interactions

Systems:

- nucleus as a collection of bound protons and neutrons,
- nucleon as a collection of bound quarks.

Interactions:

- Nuclear Interactions from quark interactions,
- Nuclear Medium Effects on quarks distributions.

(Some) Quantities of Interest

Nuclear structure:

- Shape (radii / deformation / ...),
- Electro-magnetic charge distribution (form factor),
- Nucleon momentum distribution (wave function),
- Clustering and correlations,

Nucleon Structure:

- Nuclear forces from quark interactions
- Quark structure of bound and free nucleons

Nuclear Challenge

Nuclei are a low energy phenomena, => QCD is non perturbative!

Nuclear Many-Body Challenge

Many-body Schrödinger Equation

$$\sum_{i} \left\{ -\frac{\hbar^2}{2m_i} \nabla_i^2 \Psi(\vec{r}_1, \dots, \vec{r}_N, t) \right\} + U(\vec{r}_1, \dots, \vec{r}_N) \Psi(\vec{r}_1, \dots, \vec{r}_N, t) = i\hbar \frac{\partial}{\partial t} \Psi(\vec{r}_1, \dots, \vec{r}_N, t)$$

Main Challenges:

- 1. No 'fundamental' Interaction.
- 2. Complex phenomenological parametrizations (e.g. over 18 operators)

Solution: Effective Theories

* Should converge to exact solution

Solution: Effective Theories

* Should converge to exact solution

- **<u>Goal</u>**: Study the internal structure (and dynamics) of complex objects
- Means: using high energy lepton scattering
- Reaction determined by two variables:
 - $Q^2 = -q^2$ Interaction-Scale
 - $x_B = Q^2/(2m_pv)$ Dynamics

- **<u>Goal</u>**: Study the internal structure (and dynamics) of complex objects
- Means: using high energy lepton scattering
- Reaction determined by two variables:
 - $Q^2 = -q^2$ Interaction-Scale
 - $x_B = Q^2/(2m_p v)$ Dynamics

- **<u>Goal</u>**: Study the internal structure (and dynamics) of complex objects
- Means: using high energy lepton scattering
- Reaction determined by two variables:
 - $Q^2 = -q^2$ Interaction-Scale
 - $x_B = Q^2/(2m_pv)$ Dynamics

- **<u>Goal</u>**: Study the internal structure (and dynamics) of complex objects
- Means: using high energy lepton scattering
- Reaction determined by two variables:
 - $Q^2 = -q^2$ Interaction-Scale
 - $x_B = Q^2/(2m_pv)$ Dynamics

- **<u>Goal</u>**: Study the internal structure (and dynamics) of complex objects
- Means: using high energy lepton scattering
- Reaction determined by two variables:
 - $Q^2 = -q^2$ Interaction-Scale
 - $x_B = Q^2/(2m_p v)$ Dynamics

Goal: Study the internal structure (and dynamics) of complex objects

Means: using high energy lepton scattering

100s eV – 100s keV: Material structure

<u>Goal</u>: Study the internal structure (and dynamics) of complex objects

Means: using high energy lepton scattering

Worldwide Effort

Postcard collection

(e,e'): Energy transfer defines physics

21

Everything is interesting...

...But we will focus on 3 regions

1. Elastic

- structure of the nucleon / nucleus
 - Form factors, charge distributions, spin dependent FF

2. Quasielastic (QE)

- Shell structure
 - Momentum distributions
 - Occupancies
- Short Range Correlated nucleon pairs
- Nuclear transparency and color transparency
- 3. Deep Inelastic Scattering (DIS)
 - The EMC Effect and Nucleon modification
 - Quark hadronization in nuclei

Quick Overview: Elastic

- Nuclear charge (proton) radius
- Nuclear Neutron radius
- Nucleon Form-Factors and charge densities

incoming e-

 $\rightarrow \theta = 32.8^{\circ}$ Electron energy = 454.3 MeV \rightarrow $\lambda = 2.73 \text{ fm}$

Calculated radius = 3.07 fm

Measured rms radius = 3.19 fm

Weak Interaction: Neutron Distribution

Applications of PV at Jefferson Lab

- Nucleon Structure (strangeness) -- HAPPEX / G0
- Standard Model Tests ($\sin^2 \theta_W$) -- e.g. Qweak

Nuclear Structure (neutron density) : PREX

Weak Interaction: Neutron Distribution

Clean Probe Couples Mainly to Neutrons

	proton	neutron
Electric charge	1	0
Weak charge	80.0	1

Weak Interaction: Neutron Distribution

Clean Probe Couples Mainly to Neutrons

	proton	neutron
Electric charge	1	0
Weak charge	0.08	1

High Accuracy:

$$\frac{dA}{A} = 3\% \quad \rightarrow \quad \frac{dR_n}{R_n} = 1\%$$

 R_n = neutron matter radius

From Intuition to Formalism

Lab frame kinematics

Invariants: $p^{\mu}p_{\mu} = M^2$ $Q^2 = -q^{\mu}q_{\mu} = |\vec{q}|^2 - \omega^2$ $W^2 = (q^{\mu} + p^{\mu})^2 = p'_{\mu}p'^{\mu}$

From Intuition to Formalism (Elastic)

Recoil factor

$$\frac{d\sigma}{d\Omega} = \sigma_M \frac{E}{E} \left\{ \left[F_1^2(Q^2) + \frac{Q^2}{4M^2} \kappa^2 F_2^2(Q^2) \right] + \frac{Q^2}{2M^2} [F_1(Q^2) + \kappa F_2(Q^2)]^2 \tan^2 \frac{\theta}{2} \right\}$$

$$= \sigma_M \frac{E}{E} \left[\frac{G_E^2(Q^2) + \tau G_M^2(Q^2)}{1 + \tau} + 2\tau \tan^2 \frac{\theta}{2} G_M^2(Q^2) \right]$$

$$= \sigma_M \frac{E}{E} \left[\frac{Q^4}{q^4} R_L(Q^2) + \left(\frac{Q^2}{2q^2} + \tan^2 \frac{\theta}{2} \right) R_T(Q^2) \right]$$
Mott cross section: $\sigma_M = \frac{\alpha^2 \cos^2 \left(\frac{\theta_e}{2} \right)}{4E^2 \sin^4 \left(\frac{\theta_e}{2} \right)}$

 $\begin{array}{l} \label{eq:posterior} \begin{tabular}{l} \label{eq:posterior} \end{tabular} P_1, \end{tabular} F_1, \end{tabular} F_2: \end{tabular} \e$

Form Factors: Cross-Sections

Form Factors: Polarization Transfer

Form Factors: Polarization Transfer

$$I_{0}P_{x} = -2\sqrt{\tau(1+\tau)}G_{E}G_{M}\tan(\theta/2)$$
$$I_{0}P_{z} = \frac{1}{M}(E-E')\sqrt{\tau(1+\tau)}G_{M}^{2}\tan^{2}(\theta/2)$$

$$\frac{G_E^2}{G_M^2} = \frac{-P_x}{P_z} \frac{E+E'}{2M} \tan(\theta/2)$$

LARGE Discrepancy!

(2 photon exchange? More on this if we have time at the end)

Neutron is negative in its center and positive in the edge!!!

Quick Overview: Quasi-Elastic

- Momentum Densities: Fermi Gas
- Y-Scaling
- Shell Structure and spectroscopic factors

What is a Nucleus ?

Fermi gas model: how simple a model can you make ?

Initial nucleon energy: $KE_i = p_i^2 / 2m_p$ Final nucleon energy: $KE_f = p_f^2 / 2m_p = (\vec{q} + \vec{p}_i)^2 / 2m_p$ Energy transfer: $v = KE_f - KE_i = \frac{\vec{q}^2}{2m_p} + \frac{\vec{q} \cdot \vec{p}_i}{m_p}$ Expect: •Peak centroid at $v = q^2/2m_p + \varepsilon$

e'

42

- •Peak width $2qp_{\text{fermi}}/m_{\text{p}}$
- •Total peak cross section = $Z\sigma_{ep} + N\sigma_{en}$

Scaling

•The dependence of a cross section, in certain kinematic regions, on a single variable.

- •scaling validates the scaling assumption.
- •Scale-breaking indicates new physics.

•At moderate Q² and x>1 we expect to see evidence for y-scaling, indicating that the electrons are scattering from quasifree nucleons

• y = minimum momentum of struck nucleon

•At high Q^2 we expect to see evidence for x-scaling, indicating that the electrons are scattering from quarks.

•x = $Q^2/2mv$ = fraction of nucleon momentum carried by struck quark (in infinite momentum frame)

Assumption: scattering takes place from a quasi-free proton or neutron in the nucleus.

y is the momentum of the struck nucleon parallel to the momentum transfer: $y \approx -q/2 + mv/q$ (nonrelativistically)

IF the scattering is quasifree, then F(y) is the integral over all perpendicular nucleon momenta (nonrelativistically).

Goal: extract the momentum distribution n(k) from F(y).

Assumptions & Potential Scale Breaking Mechanisms

- No Final State Interactions (FSI)
- No internal excitation of (A-1)
- Full strength of Spectral function can be integrated over at finite *q*
- No inelastic processes (choose y<0)
- No medium modifications (discussed later)

Final State Interactions (FSI) complicate this simple picture

Benhar et al. PRC 44, 2328 Benhar, Pandharipande, PRC 47, 2218 Benhar et al. PLB 3443, 47

But what about the Shell Model?

• Many-Body Hamiltonian:

$$H = \sum_{i=1}^{A} \frac{p^2}{2m_N} + \sum_{i < j=1}^{A} v_{2body}(i, j) + \sum_{i < j < k=1}^{A} v_{3body}(i, j, k) + \dots$$

• Mean-Field Approximation:

 $H = \sum_{i=1}^{A} \frac{p^2}{2m_N} + \sum_{i=1}^{A} V(i)$

- Results in an "atom-like" shell model:
 - Ground state energies
 - Excitation Spectrum
 - Spins
 - Parities

(response functions, that is)

(When you include electron and proton spin, there are 18!)

(And if you scatter from a polarized spin-1 target, there are 41. Double Yikes!!)

where

¹⁶O(e,e'p) and shell structure

 $1p_{1/2},\,1p_{3/2}$ and $1s_{1/2}$ shells visible

Momentum distribution as expected for /= 0, 1 Fissum et al, PRC <u>70</u>, 034606 (2003)

But we do not see enough protons!

NIKHEF

But we do not see enough protons! (More to come...)

53

Quick Overview: Deep Inelastic

- Structure Functions
- EMC Effect

Partonic Structure

Partonic Structure: $F_2(x,Q^2) = \sum_i e_i^2 \cdot x \cdot f_i(x)$

Partonic Structure: $F_2(x,Q^2) = \sum e_i^2 \cdot x \cdot f_i(x)$

Partonic Structure:
$$F_2(x,Q^2) = \sum_i e_i^2 \cdot x \cdot f_i(x)$$

$$\frac{d^2\sigma}{d\Omega dE'} = \sigma_A = \frac{4\alpha^2 E'^2}{Q^4} \left[2\frac{F_1}{M} \sin^2\left(\frac{\theta}{2}\right) + \frac{F_2}{V} \cos^2\left(\frac{\theta}{2}\right) \right]$$

Partonic – Nucleonic Interplay

Quark – Anti-quark Pair 00000 Gluon Quark

Quiz: What is the *simplest* example of nuclear interaction affecting partonic properties?

(winner gets a beer)

Quiz: What is the *simplest* example of nuclear interaction affecting partonic properties?

Answer:

The nuclear interaction that binds the deuteron also makes the neutron stable.

- Simplest nuclear system = Deuteron,
- Free neutron is unstable: decays in ~ 10 minuets,
- Bound in the Deuteron, a neutron can live forever!

Interplay Challenge: 'Strength 'Scales

Interplay Challenge: 'Strength 'Scales

EMC Effect

- Deviation of the per-nucleon DIS cross section ratio of nuclei relative to deuterium from unity.
- Universal shape for 0.3<x<0.7 and 3<A<197.
- ~Independent of Q².
- Overall increasing as a function of A.
- No fully accepted theoretical explanation.

$$\frac{d^2\sigma}{d\Omega dE'} = \sigma_A = \frac{4\alpha^2 E'^2}{Q^4} \left[2\frac{F_1}{M} \sin^2\left(\frac{\theta}{2}\right) + \frac{F_2}{V} \cos^2\left(\frac{\theta}{2}\right) \right] \quad F_2(x, Q^2) = \sum_i e_i^2 \cdot x \cdot f_i(x)$$

EMC Effect

- Deviation of the per-nucleon DIS cross section ratio of nuclei relative to deuterium from unity.
- Universal shape for 0.3<x<0.7 and 3<A<197.
- ~Independent of Q².
- Overall increasing as a function of A.
- No fully accepted theoretical explanation.

$$\frac{d^2\sigma}{d\Omega dE'} = \sigma_A = \frac{4\alpha^2 E'^2}{Q^4} \left[2\frac{F_1}{M} \sin^2\left(\frac{\theta}{2}\right) + \frac{F_2}{V} \cos^2\left(\frac{\theta}{2}\right) \right] \quad F_2(x, Q^2) = \sum_i e_i^2 \cdot x \cdot f_i(x)$$

EMC: Nuclear Effect on Partons

Theory: 1000 papers, 3 Ideas

1. Proper treatment of 'known' nuclear effects

[explain some of the effect, up to x≈0.5. Sensitive to SRCs]

- Nuclear Binding and Fermi motion, Pions, Coulomb Field.
- No modification of bound nucleon structure.

2. Bound Nucleons are 'larger' than free nucleons.

- Larger confinement volume => slower quarks.
- Mean-Field effect.
- Momentum Independent.
- Static.

3. Short-Range Correlations

- Beyond the mean-field.
- Determined by SRC pairs counting.
- Dynamical!

EMC – Everyone's Model is Cool (G. A. Miller)

Theory: 1000 papers, 3 Ideas

- 1. Proper treatment of 'known' nuclear effects [explain some of the effect, up to x≈0.5. <u>Sensitive to SRCs</u>]
 - Nuclear Binding and Fermi motion, Pions, Coulomb Field.
 - No modification of bound nucleon structure.

Theory: 1000 papers, 3 Ideas

- 1. Proper treatment of 'known' nuclear effects [explain some of the effect, up to x≈0.5. Sensitive to SRCs]
 - Nuclear Binding and Fermi motion, Pions, Coulomb Field.
 - No modification of bound nucleon structure.
- 2. Bound Nucleons are 'larger' than free nucleons.
 - Larger confinement volume => slower quarks.
 - Mean-Field effect.
 - Momentum Independent.
 - Static.
- 3. Short-Range Correlations
 - Beyond the mean-field.
 - Determined by SRC pairs counting.
 - Dynamical!

EMC – Everyone's Model is Cool (G. A. Miller)

Summary (1): Modern nuclear physics -From nothing to everything

Summary (2): Today's overview

Elastic scattering (Form Factors, FF):

- Nuclei + virtual photon
- Nuclei + Z boson
- Nucleons + virtual photon => Nucleon charge FF
- Nucleons + Z boson

- => Nuclear charge FF
- => Nuclear neutron FF
- => Nucleon strange FF + ...

Quasielsatic scattering:

- Scaling and momentum distributions
- Shell structure and spectroscopic factors
- Correlations
- ...

Deep Inelastic Scattering:

- Nucleons => Structure functions and PDFs
- Nuclei => In-medium structure functions and nuclear PDFs

Summary (3): Never mix between what we Know / Measure / Reconstruct / Extract

- Know:
 - Beam probe (particle type + energy)
 - Target
- Measure:
 - Scattered probe
 - Additional particles emitted
 - Cross-sections
- Reconstruct:
 - Short Lived particles
 - Missing momentum
 - Missing Energy
- Extract:
 - Physics! (momentum distribution, shell occupancies ...)
Summary (3): Never mix between what we Know / Measure / Reconstruct / Extract

- Know:
 - Beam probe (particle type + energy)
 - Target
- Measure:
 - Scattered probe
 - Additional particles emitted
 - Cross-sections
- Reconstruct:
 - Short Lived particles
 - Missing momentum
 - Missing Energy
- Extract:

• Physics! (momentum distribution, shell occupancies ...)

Increasing level of assumptions (i.e. model dependencies)

Tomorrow: Short-Range nuclear Structure

Theory:

- 1. Beyond the mean-field: NN Correlations,
- 2. Effective vs. ab-initio calculations
- 3. Phase-equivalent NN interactions
- 4. Reaction theory: confronting theory and experiment.

Experiment:

- 1. (e,e'), (e,e'N), (e,e'NN) => Details of NN correlations,
- 2. Correlations in asymmetric nuclei,
- 3. NN interactions at short distances.

Contact Formalism: Effective theory for short-distance.