RUGS

Introduction

to QCD

Jianwei Qiu
Theory Center, Jefferson Lab May 31 - June 2, 2017

Lecture one/two

HUC영

TOPICS
Introduction to QCD
Jianwei Qiu (Jefferson Lab)
Electron Scattering Experiments Wouter Deconinck (William and Mary)
Frasmentation Functions and
Global QCD Fits
Emanuele Nocera (Oxford U
Hadron Spectrum from Experiment: A Window on Color Confinement
Whe ereningoon Clasasouw
Nuclear Structure Studies and Short-Range Correlations Or Hen (MIT)
Statistical Methods and the Physics of Nucleon-Nucleon Interactions Enrique Ruiz Arriola (U. of Granada)

Electron-Ion Collider Rik Yoshida Jefferson Lab

MAY 30 - JUNE 16, 2017
The Hampton University Graduate Summer (HUGS) program at Jefferson Lab is a summer school designed for graduate students with at least one year of research experience, and focuses primarily on experimental and theoretical topics of current interest in the physics of strong interactions. The program is simultaneously intensive, friendly, and casual, providing students many opportunities to interact with internationally renowned lecturers and Jefferson Lab staff, as well as with other graduate students and visitors.

APPLICATION DEADLINE:
March 10, 2017
www. jlab.org/HUGS

The plan for my six lectures

\square The Goal:
To understand the strong interaction dynamics, and hadron structure, in terms of Quantum Chromo-dynamics (QCD)
\square The Plan (approximately):
From hadrons to partons, the quarks and gluons in QCD
Fundamentals of QCD, Factorization, Evolution, and Elementary hard processes

Four lectures
Hadron structures and properties in QCD
Parton distribution functions (PDFs), Transverse momentum dependent PDFs (TMDs),

Generalized PDFs (GPDs), and
Multi-parton correlation functions
Two lectures

New particles, new ideas, and new theories

\square Early proliferation of new hadrons - "particle explosion":

New particles, new ideas, and new theories

\square Proliferation of new particles - "November Revolution":

New particles, new ideas, and new theories

\square Proliferation of new particles - "November Revolution":

How do we make sense of all of these?

Pentaquark, ...

Another particle explosion?

New particles, new ideas, and new theories

\square Early proliferation of new hadrons - "particle explosion":

\square Nucleons has internal structure!
1933: Proton's magnetic moment

Otto Stern

$$
\begin{aligned}
\mu_{p} & =g_{p}\left(\frac{e \hbar}{2 m_{p}}\right) \\
g_{p} & =2.792847356(23) \neq 2! \\
\mu_{n} & =-1.913\left(\frac{e \hbar}{2 m_{p}}\right) \neq 0!
\end{aligned}
$$

New particles, new ideas, and new theories

\square Early proliferation of new hadrons - "particle explosion":

\square Nucleons has internal structure!
1960: Elastic e-p scattering

Robert Hofstadter
Nobel Prize 1961

Form factors

Electric charge distribution

ρ (b) $\left[\mathrm{fm}^{-2}\right]$

New particles, new ideas, and new theories

\square Early proliferation of new particles - "particle explosion":

\square Nucleons are made of quarks!

Murray Gell-Mann
Nobel Prize, 1969

The naïve Quark Model

\square Flavor SU(3) - assumption:
Physical states for u, d, s, neglecting any mass difference, are represented by 3 -eigenstates of the fund'I rep'n of flavor SU(3)
\square Generators for the fund'I rep'n of $S U(3)-3 \times 3$ matrices:

$$
J_{i}=\frac{\lambda_{i}}{2} \quad \text { with } \lambda_{i}, i=1,2, \ldots, 8 \text { Gell-Mann matrices }
$$

\square Good quantum numbers to label the states:

$$
J_{3}=\frac{1}{2}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right) \quad J_{8}=\frac{1}{2 \sqrt{3}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right) \quad \begin{gathered}
\text { simultaneously } \\
\text { diagonalized }
\end{gathered}
$$

Isospin: $\hat{I}_{3} \equiv J_{3}$, Hypercharge: $\hat{Y} \equiv \frac{2}{\sqrt{3}} J_{8}$
\square Basis vectors - Eigenstates: $\quad\left|I_{3}, Y\right\rangle$

$$
v^{1} \equiv\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \Longrightarrow u=\left|\frac{1}{2}, \frac{1}{3}\right\rangle \quad v^{2} \equiv\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \Longrightarrow d=\left|-\frac{1}{2}, \frac{1}{3}\right\rangle \quad v^{3} \equiv\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \Rightarrow s=\left|0,-\frac{2}{3}\right\rangle
$$

The naïve Quark Model

\square Quark states:

$$
u=\left|\frac{1}{2}, \frac{1}{3}\right\rangle \quad d=\left|-\frac{1}{2}, \frac{1}{3}\right\rangle \quad s=\left|0,-\frac{2}{3}\right\rangle
$$

Spin:

Baryon \#: $\quad B=1 / 3$ Strangeness: $\boldsymbol{S}=\boldsymbol{Y}-\boldsymbol{B} \quad$ Electric charge: $Q \equiv I_{3}+\frac{Y}{2}$

$$
u\left\{\begin{array} { l }
{ Q = 2 / 3 e } \\
{ s = 1 / 2 } \\
{ I _ { 3 } = 1 } \\
{ Y = 1 / 3 } \\
{ B = 1 / 3 } \\
{ S = 0 }
\end{array} \quad d \left\{\begin{array} { l }
{ Q = - 1 / 3 e } \\
{ s = 1 / 2 } \\
{ I _ { 3 } = - 1 } \\
{ Y = 1 / 3 } \\
{ B = 1 / 3 } \\
{ S = 0 }
\end{array} \quad s \left\{\begin{array}{l}
Q=-1 / 3 e \\
s=1 / 2 \\
I_{3}=0 \\
Y=-2 / 3 \\
B=1 / 3 \\
S=-1
\end{array}\right.\right.\right.
$$

\square Antiquark states: $v_{i} \equiv \epsilon_{i j k} v^{j} v^{k}$

$$
\begin{aligned}
& \hat{I}_{3} v_{1}=\epsilon_{123}\left[\left(\hat{I}_{3} v^{2}\right) v^{3}+v^{2}\left(\hat{I}_{3} v^{3}\right)\right]+\epsilon_{132}\left[\left(\hat{I}_{3} v^{3}\right) v^{2}+v^{3}\left(\hat{I}_{3} v^{2}\right)\right]=-\frac{1}{2} v_{1} \\
& \hat{Y} v_{1}=\epsilon_{123}\left[\left(\hat{Y} v^{2}\right) v^{3}+v^{2}\left(\hat{Y} v^{3}\right)\right]+\epsilon_{132}\left[\left(\hat{Y} v^{3}\right) v^{2}+v^{3}\left(\hat{Y} v^{2}\right)\right]=-\frac{1}{3} v_{1} \\
& u \longrightarrow \bar{u}=\left|-\frac{1}{2},-\frac{1}{3}\right\rangle
\end{aligned}
$$

Mesons

Quark-antiquark $q \bar{q}$ flavor states: $B=0$

\square Group theory says:

$$
\begin{aligned}
& q(u, d, s)=\mathbf{3}, \quad \bar{q}(\bar{u}, \bar{d}, \bar{s})=\overline{\mathbf{3}}, \quad \text { of flavor } \mathrm{SU}(3) \\
& \mathbf{3} \otimes \overline{\mathbf{3}}=\mathbf{8} \oplus \mathbf{1} \quad \Rightarrow \mathbf{1} \text { flavor singlet } \mathbf{+} \mathbf{8} \text { flavor octet states }
\end{aligned}
$$

There are three states with $I_{3}=0, Y=0: u \bar{u}, d \bar{d}, s \bar{s}$
\square Physical meson states ($\mathrm{L}=0, \mathrm{~S}=0$):
\diamond Octet states: $\quad A=\frac{1}{\sqrt{2}}(u \bar{u}-d \bar{d}) \quad \Rightarrow \pi^{0}$
\triangleleft Singlet states:

$$
\left.\begin{array}{l}
B=\frac{1}{\sqrt{6}}(u \bar{u}+d \bar{d}-2 s \bar{s}) \\
C=\frac{1}{\sqrt{3}}(u \bar{u}+d \bar{d}+s \bar{s}) \quad \eta_{8} \\
\\
C \eta_{1}
\end{array}\right\} \eta, \eta^{\prime}
$$

Quantum Numbers

\square Meson states:
\triangleleft Spin of $q \bar{q}$ pair:
\diamond Spin of mesons:
\triangleleft Parity:
\diamond Charge conjugation:

- L=0 states:

$$
J^{P C}=0^{-+}:(\boldsymbol{Y}=\boldsymbol{S})
$$

\square Color:

$$
J^{P C}=1^{--}: \quad(Y=S)
$$

$\oplus \operatorname{mix}(\omega, \phi)$
Flavor singlet, spin octet
Flavor octet, spin octet

No color was introduced!

Baryons

3 quark $q q q$ states: $B=1$
\square Group theory says:
\diamond Flavor:
$\mathbf{3} \otimes 3 \otimes \mathbf{3}=\mathbf{1 0}_{S} \oplus \mathbf{8}_{M_{S}} \oplus \mathbf{8}_{M_{A}} \oplus \mathbf{1}_{A}$
S : symmetric in all $3 \mathrm{q}, \mathrm{M}_{S}$: symmetric in 1 and 2 ,
M_{A} : antisymmetric in 1 and $2, A:$ antisymmetric in all 3
\triangleleft Spin:
$2 \otimes 2 \otimes 2=4_{S} \oplus 2$
$\mathbf{2}_{M_{s}}$
$\oplus \mathbf{2}_{M_{A}}$

$$
\Rightarrow S=\frac{3}{2}, \frac{1}{2}, \frac{1}{2}
$$

\square Physical baryon states:

Neutron

$$
\Delta^{++}(\text {uuu }), \ldots
$$

Violation of Pauli exclusive principle

Color

\square Minimum requirements:
\diamond Quark needs to carry at least 3 different colors
\diamond Color part of the 3-quarks' wave function needs to antisymmetric
\square SU(3) color:
Recall: $\quad 3 \otimes 3 \otimes 3=10_{S} \oplus 8_{M_{S}} \oplus 8_{M_{A}} \oplus 1_{A}$

Antisymmetric color singlet state:
$\Longrightarrow c$ (Red, Green, Blue)

$$
\psi_{\text {Color }}\left(c_{1}, c_{2}, c_{3}\right)=\frac{1}{\sqrt{6}}[\text { RGB-GRB }+ \text { RBG-BRG }+ \text { GBR-BGR }]
$$

\square Baryon wave function:

$$
\Psi\left(q_{1}, q_{2}, q_{3}\right)=\psi_{\text {Space }}\left(x_{1}, x_{2}, x_{3}\right) \otimes \psi_{\text {Flavor }}\left(f_{1}, f_{2}, f_{3}\right) \otimes \psi_{\text {Spin }}\left(s_{1}, s_{2}, s_{3}\right) \otimes \psi_{\text {Color }}\left(c_{1}, c_{2}, c_{3}\right)
$$

Antisymmetric Symmetric Symmetric Symmetric Antisymmetric

A complete example: Proton

\square Wave function - the state:

$$
|p \uparrow\rangle=\frac{1}{\sqrt{18}}[u u d(\uparrow \downarrow \uparrow+\downarrow \uparrow \uparrow-2 \uparrow \uparrow \downarrow)+u d u(\uparrow \uparrow \downarrow+\downarrow \uparrow \uparrow-2 \uparrow \downarrow \uparrow)
$$

\square Normalization:

$$
+d u u(\uparrow \downarrow \uparrow+\uparrow \uparrow \downarrow-2 \downarrow \uparrow \uparrow)]
$$

$$
\langle p \uparrow \mid p \uparrow\rangle=\frac{1}{18}\left[\left(1+1+(-2)^{2}\right)+\left(1+1+(-2)^{2}\right)+\left(1+1+(-2)^{2}\right)\right]=1
$$

\square Charge:

$$
\hat{Q}=\sum_{i=1}^{3} \hat{Q}_{i}
$$

$$
\langle p \uparrow| \hat{Q}|p \uparrow\rangle=\frac{1}{18}\left[\left(\frac{2}{3}+\frac{2}{3}-\frac{1}{3}\right)\left(1+1+(-2)^{2}\right)+\left(\frac{2}{3}-\frac{1}{3}+\frac{2}{3}\right)\left(1+1+(-2)^{2}\right)\right.
$$

$$
\left.+\left(-\frac{1}{3}+\frac{2}{3}+\frac{2}{3}\right)\left(1+1+(-2)^{2}\right)\right]=1
$$

\square Spin:

$$
\hat{S}=\sum_{i=1}^{3} \hat{s}_{i}
$$

$$
\begin{gathered}
\langle p \uparrow| \hat{S}|p \uparrow\rangle=\frac{1}{18}\left\{\left[\left(\frac{1}{2}-\frac{\overline{\overline{1}}^{1}}{2}+\frac{1}{2}\right)+\left(-\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\right)+4\left(\frac{1}{2}+\frac{1}{2}-\frac{1}{2}\right)\right]\right. \\
\left.+\left[\frac{1}{2}+\frac{1}{2}+4 \frac{1}{2}\right]+\left[\frac{1}{2}+\frac{1}{2}+4 \frac{1}{2}\right]\right\}=\frac{1}{2}
\end{gathered}
$$

$$
\begin{aligned}
& \square \text { Magnetic moment: } \\
& \begin{array}{l}
\mu_{p}=\langle p \uparrow| \sum_{i=1}^{3} \hat{\mu}_{i}\left(\hat{\sigma}_{3}\right)_{i}|p \uparrow\rangle=\frac{1}{3}\left[4 \mu_{u}-\mu_{d}\right] \\
\mu_{n}=\frac{1}{3}\left[4 \mu_{d}-\mu_{u}\right]
\end{array} \quad \frac{\mu_{u}}{\mu_{d}} \approx \frac{2 / 3}{-1 / 3}=-2
\end{aligned} \quad\left[\begin{array}{l}
\left(\frac{\mu_{n}}{\mu_{p}}\right)_{\mathrm{QM}}=-\frac{2}{3} \\
\left(\frac{\mu_{n}}{\mu_{p}}\right)_{\operatorname{Exp}}=-0.68497945(58)
\end{array}\right.
$$

How to "see" substructure of a nucleon?

\square Modern Rutherford experiment - Deep Inelastic Scattering:

SLAC 1968: $e(p)+h(P) \rightarrow e^{\prime}\left(p^{\prime}\right)+X$

\triangleleft Localized probe:

$$
\begin{gathered}
Q^{2}=-\left(p-p^{\prime}\right)^{2} \gg 1 \mathrm{fm}^{-2} \\
\Rightarrow \frac{1}{Q} \ll 1 \mathrm{fm}
\end{gathered}
$$

\diamond Two variables:

$$
\begin{aligned}
Q^{2} & =4 E E^{\prime} \sin ^{2}(\theta / 2) \\
x_{B} & =\frac{Q^{2}}{2 m_{N} \nu} \\
\nu & =E-E^{\prime}
\end{aligned}
$$

Nobel Prize, 1990

- Quark Model + Yang-Mill gauge theory

Quantum Chromo-dynamics (QCD)

= A quantum field theory of quarks and gluons =
Fields:
Quark fields: spin- $1 / 2$ Dirac fermion (like electron)
$\psi_{i}^{f}(x) \quad$ Color triplet: Flavor:

$$
\begin{aligned}
& i=1,2,3=N_{c} \\
& f=u, d, s, c, b, t
\end{aligned}
$$

$A_{\mu, a}(x)$ Gluon fields: spin-1 vector field (like photon) Color octet: $\quad a=1,2, \ldots, 8=N_{c}^{2}-1$
\square QCD Lagrangian density:

$$
\begin{aligned}
\mathcal{L}_{Q C D}(\psi, A)=\sum_{f} & \bar{\psi}_{i}^{f}\left[\left(i \partial_{\mu} \delta_{i j}-g A_{\mu, a}\left(t_{a}\right)_{i j}\right) \gamma^{\mu}-m_{f} \delta_{i j}\right] \psi_{j}^{f} \\
& -\frac{1}{4}\left[\partial_{\mu} A_{\nu, a}-\partial_{\nu} A_{\mu, a}-g C_{a b c} A_{\mu, b} A_{\nu, c}\right]^{2} \\
& + \text { gauge fixing }+ \text { ghost terms }
\end{aligned}
$$

\square QED - force to hold atoms together:

$$
\mathcal{L}_{Q E D}(\phi, A)=\sum_{f} \bar{\psi}^{f}\left[\left(i \partial_{\mu}-e A_{\mu}\right) \gamma^{\mu}-m_{f}\right] \psi^{f}-\frac{1}{4}\left[\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right]^{2}
$$

QCD is much richer in dynamics than QED
Gluons are dark, but, interact with themselves, NO free quarks and gluons

Gauge property of QCD

\square Gauge Invariance:

$$
\begin{aligned}
& \psi_{i}(x) \rightarrow \psi_{j}^{\prime}(x)=U(x)_{j i} \psi_{i}(x) \\
& A_{\mu}(x) \rightarrow A_{\mu}^{\prime}(x)=U(x) A_{\mu}(x) U^{-1}(x)+\frac{i}{g}\left[\partial_{\mu} U(x)\right] U^{-1}(x)
\end{aligned}
$$

where $\quad A_{\mu}(x)_{i j} \equiv A_{\mu, a}(x)\left(t_{a}\right)_{i j}$

$$
U(x)_{i j}=\left[e^{i \alpha_{a}(x) t_{a}}\right]_{i j} \quad \text { Unitary } \quad[\operatorname{det}=1, \mathrm{SU}(3)]
$$

\square Color matrices:

$$
\left[t_{a}, t_{b}\right]=i C_{a b c} t_{c}
$$

Generators for the fundamental representation of SU3 color
\square Gauge Fixing:

$$
\mathcal{L}_{\text {gauge }}=-\frac{\lambda}{2}\left(\partial_{\mu} A_{a}^{\mu}\right)\left(\partial_{\nu} A_{a}^{\nu}\right)
$$

Allow us to define the gauge field propagator:

$$
G_{\mu \nu}(k)_{a b}=\frac{\delta_{a b}}{k^{2}}\left[-g_{\mu \nu}+\frac{k_{\mu} k_{\nu}}{k^{2}}\left(1-\frac{1}{\lambda}\right)\right]
$$

with $\lambda=1$ the Feynman gauge

Ghost in QCD

- Ghost:

$$
\mathcal{L}_{g h o s t}=\left(\partial_{\mu} \bar{\eta}_{a} \overparen{x}\right)\left(\partial^{\mu} \eta_{a}(x)-g C_{a b c} A_{b}^{\mu}(x) \vec{\eta}_{c}(x)\right.
$$

so that the optical theorem (hence the unitarity) can be respected

Fail without the ghost loop

Feynman rules in QCD

\square Propagators:
Quark:

$\frac{i}{\gamma \cdot k-m} \delta_{i j}$

Gluon:

$$
\frac{i \delta_{a b}}{k^{2}}\left[-g_{\mu \nu}+\frac{k_{\mu} k_{\nu}}{k^{2}}\left(1-\frac{1}{\lambda}\right)\right]
$$

for a covariant gauge

$$
\frac{i \delta_{a b}}{k^{2}}\left[-g_{\mu \nu}+\frac{k_{\mu} n_{\nu}+n_{\mu} k_{\nu}}{k \cdot n}\right]
$$

for a light-cone gauge

$$
n \cdot A(x)=0 \text { with } n^{2}=0
$$

Ghost::

$$
\frac{i \delta_{a b}}{k^{2}}
$$

Feynman rules in QCD

\square Interactions:

$$
-g \bar{\psi} \gamma^{\mu} A_{\mu, a} t_{a} \psi
$$

$$
\begin{aligned}
& \frac{1}{2} g C_{a b c}\left(\partial_{\mu} A_{\nu, a}\right. \\
& \left.\quad-\partial_{\nu} A_{\mu, a}\right) A_{b}^{\mu} A_{c}^{\nu} \\
& \\
& \quad-\frac{g^{2}}{4} C_{a b c} C_{a b^{\prime} c^{\prime}} \\
& \quad * A_{b}^{\mu} A_{c}^{\nu} A_{\mu, b^{\prime}} A_{\nu, c^{\prime}}
\end{aligned}
$$

$$
-i \boldsymbol{g}\left(t_{a}\right)_{i j} \gamma_{\mu}
$$

$$
\begin{aligned}
-g C_{a b c} & {\left[g_{\mu \nu}\left(p_{1}-p_{2}\right)_{\gamma}\right.} \\
& +g_{\nu \gamma}\left(p_{2}-p_{3}\right)_{\mu} \\
& \left.+g_{\gamma \mu}\left(p_{3}-p_{1}\right)_{\nu}\right]
\end{aligned}
$$

$$
\begin{gathered}
-i g^{2}\left[C_{e a_{1} a_{2}} C_{e a_{3} a_{4}}\right. \\
*\left(g_{\mu_{1} \mu_{3}} g_{\mu_{2} \mu_{4}}\right. \\
\left.\quad-g_{\mu_{1} \mu_{4}} g_{\mu_{2} \mu_{3}}\right) \\
\quad+\ldots]
\end{gathered}
$$

$$
\partial_{\mu} \bar{\eta}_{a}\left(g C_{a b c} A_{b}^{\mu}\right) \eta_{c}
$$

$$
g C_{a b c} k_{\mu}
$$

Renormalization, why need?

\square Scattering amplitude:

UV divergence:
result of a "sum" over states of high masses
Uncertainty principle: High mass states = "Local" interactions
No experiment has an infinite resolution!

Physics of renormalization

\square UV divergence due to "high mass" states, not observed

"Low mass" state
"High mass" states
\square Combine the "high mass" states with LO

\square Renormalization = re-parameterization of the expansion parameter in perturbation theory

Renormalization Group

\square Physical quantity should not depend on renormalization scale $\mu \longrightarrow$ renormalization group equation:
$\mu^{2} \frac{d}{d \mu^{2}} \sigma_{\mathrm{Phy}}\left(\frac{Q^{2}}{\mu^{2}}, g(\mu), \mu\right)=0 \quad \Longrightarrow \quad \sigma_{\mathrm{Phy}}\left(Q^{2}\right)=\sum_{n} \hat{\sigma}^{(n)}\left(Q^{2}, \mu^{2}\right)\left(\frac{\alpha_{s}(\mu)}{2 \pi}\right)^{n}$
\square Running coupling constant:

$$
\mu \frac{\partial g(\mu)}{\partial \mu}=\beta(g) \quad \alpha_{s}(\mu)=\frac{g^{2}(\mu)}{4 \pi}
$$

\square QCD β function:

$$
\beta(g)=\mu \frac{\partial g(\mu)}{\partial \mu}=+g^{3} \frac{\beta_{1}}{16 \pi^{2}}+\mathcal{O}\left(g^{5}\right) \quad \beta_{1}=-\frac{11}{3} N_{c}+\frac{4}{3} \frac{n_{f}}{2}<0 \quad \text { for } n_{f} \leq 6
$$

\square QCD running coupling constant:

$$
\alpha_{s}\left(\mu_{2}\right)=\frac{\alpha_{s}\left(\mu_{1}\right)}{1-\frac{\beta_{1}}{4 \pi} \alpha_{s}\left(\mu_{1}\right) \ln \left(\frac{\mu_{2}^{2}}{\mu_{1}^{2}}\right)} \Rightarrow 0 \quad \text { as } \mu_{2} \rightarrow \infty \quad \text { for } \beta_{1}<0
$$

QCD Asymptotic Freedom

\square Interaction strength:

Asymptotic Freedom \Leftrightarrow antiscreening $\mathrm{QCD}: \frac{\partial \alpha_{s}\left(Q^{2}\right)}{\partial \ln Q^{2}}=\beta\left(\alpha_{s}\right)<0$ Compare
$\mathrm{QED}: \frac{\partial \alpha_{E M}\left(Q^{2}\right)}{\partial \ln Q^{2}}=\beta\left(\alpha_{E M}\right)>0$
D.Gross, F.Willczek, Phys.Rev.Lett 30, (1973) H.Politzer, Phys.Rev.Lett. 30, (1973)

Collider phenomenology

- Controllable perturbative QCD calculations

Effective Quark Mass

\square Ru2nning quark mass:

$$
m\left(\mu_{2}\right)=m\left(\mu_{1}\right) \exp \left[-\int_{\mu_{1}}^{\mu_{2}} \frac{d \lambda}{\lambda}\left[1+\gamma_{m}(g(\lambda))\right]\right]
$$

Quark mass depend on the renormalization scale!
\square QCD running quark mass:

$$
m\left(\mu_{2}\right) \Rightarrow 0 \quad \text { as } \mu_{2} \rightarrow \infty \quad \text { since } \quad \gamma_{m}(g(\lambda))>0
$$

\square Choice of renormalization scale:

$$
\mu \sim Q \quad \text { for small logarithms in the perturbative coefficients }
$$

\square Light quark mass: $\quad m_{f}(\mu) \ll \Lambda_{\mathrm{QCD}} \quad$ for $f=u, d$, even s
QCD perturbation theory ($Q \gg \wedge_{\text {QCD }}$) is effectively a massless theory

Infrared and collinear divergences

\square Consider a general diagram:

$$
\begin{aligned}
& p^{2}=0, \quad k^{2}=0 \text { for a massless theory } \\
& \diamond k^{\mu} \rightarrow 0 \Rightarrow(p-k)^{2} \rightarrow p^{2}=0
\end{aligned}
$$

$\longmapsto \quad$ Infrared (IR) divergence

$$
\begin{aligned}
\diamond k^{\mu} \| p^{\mu} & \Rightarrow k^{\mu}=\lambda p^{\mu} \quad \text { with } \quad 0<\lambda<1 \\
& \Rightarrow(p-k)^{2} \rightarrow(1-\lambda)^{2} p^{2}=0
\end{aligned}
$$

IR and CO divergences are generic problems of a massless perturbation theory

Infrared Safety

\square Infrared safety:

$$
\sigma_{\text {Phy }}\left(\frac{Q^{2}}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right), \frac{m^{2}\left(\mu^{2}\right)}{\mu^{2}}\right) \Rightarrow \hat{\sigma}\left(\frac{Q^{2}}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right)\right)+\mathcal{O}\left[\left(\frac{m^{2}\left(\mu^{2}\right)}{\mu^{2}}\right)^{\kappa}\right]
$$

Infrared safe $=\kappa>0$

Asymptotic freedom is useful only for quantities that are infrared safe

Foundation of perturbative QCD

\square Renormalization

- QCD is renormalizable
\square Asymptotic freedom
- weaker interaction at a shorter distance
\square Infrared safety and factorization
- calculable short distance dynamics
- pQCD factorization - connect the partons to physical cross sections
J. J. Sakurai Prize, 2003 Mueller, Sterman

Look for infrared safe and factorizable observables!

RUGS

Introduction

to QCD

Jianwei Qiu
Theory Center, Jefferson Lab May 31 - June 2, 2017

Lecture one/two

HUC영

TOPICS
Introduction to QCD
Jianwei Qiu (Jefferson Lab)
Electron Scattering Experiments Wouter Deconinck (William and Mary)
Frasmentation Functions and
Global QCD Fits
Emanuele Nocera (Oxford U
Hadron Spectrum from Experiment: A Window on Color Confinement
Whe ereningoon Clasasouw
Nuclear Structure Studies and Short-Range Correlations Or Hen (MIT)
Statistical Methods and the Physics of Nucleon-Nucleon Interactions Enrique Ruiz Arriola (U. of Granada)

Electron-Ion Collider Rik Yoshida Jefferson Lab

MAY 30 - JUNE 16, 2017
The Hampton University Graduate Summer (HUGS) program at Jefferson Lab is a summer school designed for graduate students with at least one year of research experience, and focuses primarily on experimental and theoretical topics of current interest in the physics of strong interactions. The program is simultaneously intensive, friendly, and casual, providing students many opportunities to interact with internationally renowned lecturers and Jefferson Lab staff, as well as with other graduate students and visitors.

APPLICATION DEADLINE:
March 10, 2017
www. jlab.org/HUGS

From Lagrangian to Physical Observables

\square Theorists: Lagrangian = "complete" theory
\square Experimentalists: Cross Section \longrightarrow Observables
\square A road map - from Lagrangian to Cross Section:

QCD is everywhere in our universe

\square What is the role of QCD in the evolution of the universe?

\square How hadrons are emerged from quarks and gluons?
\square How does QCD make up the properties of hadrons?
Their mass, spin, magnetic moment, ...
\square What is the QCD landscape of nucleon and nuclei?

Asymptotic freedom
$2 \mathrm{GeV}(1 / 10 \mathrm{fm}) \quad$ Probing momentum
\square How do the nuclear force arise from QCD?
$\square \ldots$

Unprecedented Intellectual Challenge!

\square Facts:
No modern detector has been able to see quarks and gluons in isolation!
Gluons are dark!
\square The challenge:
How to probe the quark-gluon dynamics, quantify the hadron structure, study the emergence of hadrons, ..., if we cannot see quarks and gluons?
\square Answer to the challenge:
Theory advances:
QCD factorization - matching the quarks/gluons to hadrons with controllable approximations!
Experimental breakthroughs:
Jets - Footprints of energetic quarks and gluons
Quarks - Need an EM probe to "see" their existence, ...
Gluons - Varying the probe's resolution to "see" their effect, ...
Energy, luminosity and measurement - Unprecedented resolution, event rates, and precision probes, especially EM probes, like one at Jlab, ...

Theoretical approaches - approximations

\square Perturbative QCD Factorization:

- Approximation at Feynman diagram level

Structure
Parton-distribution

Approximation
Power corrections
\square Effective field theory (EFT):

- Approximation at the Lagrangian level

Soft-collinear effective theory (SCET), Non-relativistic QCD (NRQCD), Heavy quark EFT, chiral EFT(s), ...
\square Other approximation or model approaches:
Light-cone perturbation theory, Dyson-Schwinger Equations (DSE), Constituent quark models, AdS/CFT correspondence, ...
\square Lattice QCD:

- Approximation mainly due to computer power

Hadron structure, hadron spectroscopy, nuclear structure, phase shift, ...

Physical Observables

Cross sections with identified hadrons are non-perturbative!

Hadronic scale $\sim 1 / \mathrm{fm} \sim 200 \mathrm{MeV}$ is not a perturbative scale

Purely infrared safe quantities

Observables without identified hadron(s)

Fully infrared safe observables - I

Fully inclusive, without any identified hadron!

$$
\sigma_{e^{+}}^{\text {total }} \rightarrow \text { hadrons }=\sigma_{e^{+}}^{\text {total }} \rightarrow \text { partons }
$$

The simplest observable in QCD

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ hadrons inclsusive cross sections

$\square \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ hadron total cross section - not a specific hadron!

If there is no quantum interference between partons and hadrons,

Finite in perturbation theory - KLN theorem
$\square \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ parton total cross section:
$\sigma_{e^{+} e^{-} \rightarrow \text { partons }}^{\text {tot }}\left(s=Q^{2}\right)=\sum_{n} \sigma^{(n)}\left(Q^{2}, \mu^{2}\right)\left(\frac{\alpha_{s}\left(\mu^{2}\right)}{\pi}\right)^{n} \quad$ Calculable in pQCD

Infrared Safety of $\mathbf{e}^{+} e^{-}$Total Cross Sections

\square Optical theorem:
\square Time-like vacuum polarization:

$$
\sim_{\vec{Q}}^{\nu} \int_{\stackrel{\rightharpoonup}{Q}}^{\mu} \sim=\left(Q^{\mu} Q^{\nu}-Q^{2} g^{\mu \nu}\right) \Pi\left(Q^{2}\right)
$$

IR safety of $\sigma_{e^{+} e^{-} \rightarrow \text { partons }}^{\text {tot }}=\mathbf{I R}$ safety of $\Pi\left(Q^{2}\right)$ with $Q^{2}>0$
\square IR safety of $\Pi\left(Q^{2}\right)$

Rest frame of the virtual photon

Lowest order (LO) perturbative calculation

\square Lowest order Feynman diagram:
\square Invariant amplitude square:

$$
\begin{aligned}
\left|\bar{M}_{e^{+} e^{-} \rightarrow Q \bar{Q}}\right|^{2} & =e^{4} e_{Q}^{2} N_{c} \frac{1}{s^{2}} \frac{1}{2^{2}} \operatorname{Tr}\left[\gamma \cdot p_{2} \gamma^{\mu} \gamma \cdot p_{1} \gamma^{v}\right] \\
& \times \operatorname{Tr}\left[\left(\gamma \cdot k_{1}+m_{Q}\right) \gamma_{\mu}\left(\gamma \cdot k_{2}-m_{Q}\right) \gamma_{v}\right] \\
& =e^{4} e_{Q}^{2} N_{c} \frac{2}{s^{2}}\left[\left(m_{Q}^{2}-t\right)^{2}+\left(m_{Q}^{2}-u\right)^{2}+2 m_{Q}^{2} s\right]
\end{aligned}
$$

$$
\begin{aligned}
& s=\left(p_{1}+p_{2}\right)^{2} \\
& t=\left(p_{1}-k_{1}\right)^{2} \\
& u=\left(p_{2}-k_{1}\right)^{2}
\end{aligned}
$$

\square Lowest order cross section:

$$
\begin{aligned}
& \frac{d \sigma_{e^{+} e^{-} \rightarrow Q \bar{Q}}}{d t}=\frac{1}{16 \pi s^{2}}\left|\bar{M}_{e^{+} e^{+} \rightarrow Q \bar{Q}}\right|^{2} \quad \text { where } s=Q^{2} \\
& \sigma_{2}^{(0)}=\sum_{Q} \sigma_{e^{+} e^{+} \rightarrow Q \bar{Q}}=\sum_{Q} e_{Q}^{2} N_{c}^{2} \frac{4 \pi \alpha_{\alpha_{m}^{2}}^{2}}{3 s}\left[1+\frac{2 m_{Q}^{2}}{s}\right] \sqrt{1-\frac{4 m_{Q}^{2}}{s}}
\end{aligned}
$$

Threshold constraint

One of the best tests for the number of colors

Next-to-leading order (NLO) contribution

\square Real Feynman diagram:

$$
\begin{gathered}
x_{i}=\frac{E_{i}}{\sqrt{s} / 2}=\frac{2 p_{i} \cdot q}{s} \quad \text { with } i=1,2,3 \\
\sum_{i} x_{i}=\frac{2\left(\sum_{i} p_{i}\right) \cdot q}{s}=2 \\
2\left(1-x_{1}\right)=x_{2} x_{3}\left(1-\cos \theta_{23}\right), \quad \text { cycl. }
\end{gathered}
$$

\square Contribution to the cross section:

$$
\frac{1}{\sigma_{0}} \frac{d \sigma_{e^{+} e^{-} \rightarrow Q \bar{Q} g}}{d x_{1} d x_{2}}=\frac{\alpha_{s}}{2 \pi} C_{F} \frac{x_{1}^{2}+x_{2}^{2}}{\left(1-x_{1}\right)\left(1-x_{2}\right)}
$$

IR as $\times 3 \rightarrow 0$
CO as $\begin{array}{r}\theta+0 \\ \theta_{23} \rightarrow 0\end{array}$

Divergent as $x_{i} \rightarrow 1$
Need the virtual contribution and a regulator!

How does dimensional regularization work?

\square Complex n-dimensional space:

$$
\int d^{n} k F(k, Q)
$$

Dimensional regularization for both IR and CO

\square NLO with a dimensional regulator:
\diamond Real: $\quad \sigma_{3, \varepsilon}^{(1)}=\sigma_{2, \varepsilon}^{(0)} \frac{4}{3}\left(\frac{\alpha_{s}}{\pi}\right)\left(\frac{4 \pi \mu^{2}}{Q^{2}}\right)^{\varepsilon}\left[\frac{\Gamma(1-\varepsilon)^{2}}{\Gamma(1-3 \varepsilon)}\right]\left[\frac{1}{\varepsilon^{2}}+\frac{3}{2 \varepsilon}+\frac{19}{4}\right]$
\triangleleft Virtual:

$$
\sigma_{2, \varepsilon}^{(1)}=\sigma_{2, \varepsilon}^{(0)} \frac{4}{3}\left(\frac{\alpha_{s}}{\pi}\right)\left(\frac{4 \pi \mu^{2}}{Q^{2}}\right)^{\varepsilon}\left[\frac{\Gamma(1-\varepsilon)^{2} \Gamma(1+\varepsilon)}{\Gamma(1-2 \varepsilon)}\right]\left[-\frac{1}{\varepsilon^{2}}-\frac{3}{2 \varepsilon}+\frac{\pi^{2}}{2}-4\right]
$$

$\triangleleft \mathrm{NLO}: \sigma_{3, \varepsilon}^{(1)}+\sigma_{2, \varepsilon}^{(1)}=\sigma_{2}^{(0)}\left[\frac{\alpha_{s}}{\pi}+O(\varepsilon)\right]$
No ε dependence!
\diamond Total: $\sigma^{\text {tot }}=\sigma_{2}^{(0)}+\sigma_{3, \varepsilon}^{(1)}+\sigma_{2, \varepsilon}^{(1)}+O\left(\alpha_{s}^{2}\right)=\sigma_{2}^{(0)}\left[1+\frac{\alpha_{s}}{\pi}\right]+O\left(\alpha_{s}^{2}\right)$ $\sigma^{\text {tot }}$ is Infrared Safe!
$\sigma^{\text {tot }}$ is independent of the choice of IR and CO regularization
Go beyond the inclusive total cross section?

Hadronic cross section in e+e-collision

\square Normalized hadronic cross section:

$$
\begin{aligned}
R_{e^{+} e^{-}}(s) \equiv & \frac{\sigma_{e^{+} e^{-} \rightarrow \text { hadrons }}(s)}{\sigma_{e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}}(s)} \\
\approx & N_{c} \sum_{q=u, d, s} e_{q}^{2}\left[1+\frac{\alpha_{s}(s)}{\pi}+\mathcal{O}\left(\alpha_{s}^{2}(s)\right)\right] \\
& +N_{c} \sum_{q=c, \ldots} e_{q}^{2}\left[\left(1+\frac{2 m_{q}^{2}}{s}\right) \sqrt{1-\frac{4 m_{q}^{2}}{s}}+\mathcal{O}\left(\alpha_{s}(s)\right)\right]
\end{aligned}
$$

Fully infrared safe observables - II

No identified hadron, but, with phase space constraints

$$
\begin{gathered}
\sigma_{e^{+} e^{-} \rightarrow \text { hadrons }}^{\mathrm{Jets}}=\sigma_{e^{+} e^{-} \rightarrow \text { partons }}^{\mathrm{Jets}} \\
\text { Jets - "trace" of partons }
\end{gathered}
$$

Thrust distribution in $\mathrm{e}^{+} \mathrm{e}^{-}$collisions
etc.

Jets - trace of partons

\square Jets - "total" cross-section with a limited phase-space

Not any specific hadron!
\square Q: will IR cancellation be completed?
\diamond Leading partons are moving away from each other
\triangleleft Soft gluon interactions should not change the direction of an energetic parton \rightarrow a "jet" - "trace" of a parton

Many Jet algorithms

Sterman-Weinberg Jet

Two-jet cross section in e+e- collisions

\square Parton-Model = Born term in QCD:

$$
\sigma_{2 \mathrm{Jet}}^{(\mathrm{PM})}=\frac{3}{8} \sigma_{0}\left(1+\cos ^{2} \theta\right)
$$

\square Two-jet in pQCD:

$$
\sigma_{2 \mathrm{Jet}}^{(\mathrm{peCD})}=\frac{3}{8} \sigma_{0}\left(1+\cos ^{2} \theta\right)\left(1+\sum_{n=1} C_{n}\left(\frac{\alpha_{s}}{\pi}\right)^{n}\right)
$$

$$
\text { with } \quad C_{n}=C_{n}(\delta)
$$

\square Sterman-Weinberg jet:

$$
\begin{aligned}
& \sigma_{2 \mathrm{Jet}}^{(\mathrm{peCD})}=\frac{3}{8} \sigma_{0}\left(1+\cos ^{2} \theta\right) \\
& \times\left[1-\frac{4}{3} \frac{\alpha_{s}}{\pi}\left(4 \ln (\delta) \ln \left(\delta^{\prime}\right)+3 \ln (\delta)+\frac{\pi^{2}}{3}+\frac{5}{2}\right)\right] \\
& \sigma_{\text {total }}=\sigma_{2 \mathrm{Jet}} \quad \text { as } Q \rightarrow \infty
\end{aligned}
$$

An early clean two-jet event

Lowest order $\left(\mathcal{O}\left(\alpha^{2} \alpha_{s}^{0}\right)\right)$:
LEP $(\sqrt{s}=90-205 \mathrm{GeV})$

Discovery of a gluon jet

First order in QCD $\left(\mathcal{O}\left(\alpha^{2} \alpha_{s}^{1}\right)\right)$:

Reputed to be the first three-jet event from TASSO

TASSO Collab., Phys. Lett. B86 (1979) 243
MARK-J Collab., Phys. Rev. Lett. 43 (1979) 830 PLUTO Collab., Phys. Lett. B86 (1979) 418 JADE Collab., Phys. Lett. B91 (1980) 142

PETRA $\mathrm{e}^{+} \mathrm{e}^{-}$storage ring at DESY:

$$
\mathrm{E}_{\mathrm{c} . \mathrm{m} .} \gtrsim 15 \mathrm{GeV}
$$

TASSO

Tagged three-jet event from LEP

\uparrow

Gluon Jet

Basics of jet finding algorithms

\square Recombination jet algorithms (almost all e+e-colliders):
Recombination metric: $\quad y_{i j}=\frac{M_{i j}^{2}}{E_{\text {c.m }}^{2}}$

$$
M_{i j}^{2}=2 \min \left(E_{i}^{2}, E_{j}^{2}\right)\left(1-\cos \theta_{i j}\right)
$$ for Durham $\mathbf{k}_{\boldsymbol{T}}$

\checkmark different algorithm = different choice of $M_{i j}^{2}$:
\diamond Combine the particle pair (i, j) with the smallest $y_{i j}:(i, j) \rightarrow k$

$$
\text { e.g. E scheme : } p_{k}=p_{i}+p_{j}
$$

\diamond iterate until all remaining pairs satisfy: $y_{i j}>y_{c u t}$
\square Cone jet algorithms (CDF, ..., colliders):
\diamond Cluster all particles into a cone of half angle R to form a jet:
\diamond Require a minimum visible jet energy: $E_{j e t}>\epsilon$
Recombination metric: $\quad d_{i j}=\min \left(k_{T_{i}}^{2 p}, k_{T_{j}}^{2 p}\right) \frac{\Delta_{i j}^{2}}{R^{2}}$ with $\quad \Delta_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}\right)^{2}$
\diamond Classical choices: $p=1-$ " k_{T} algorithm", $p=-1-$ "anti- $k_{T} ", \ldots$

Infrared safety for restricted cross sections

\square For any observable with a phase space constraint, Γ,

$$
\begin{aligned}
d \sigma(\Gamma) & \equiv \frac{1}{2!} \int d \Omega_{2} \frac{d \sigma^{(2)}}{d \Omega_{2}} \Gamma_{2}\left(k_{1}, k_{2}\right) \\
& +\frac{1}{3!} \int d \Omega_{3} \frac{d \sigma^{(3)}}{d \Omega_{3}} \Gamma_{3}\left(k_{1}, k_{2}, k_{3}\right) \\
& +\ldots \\
& +\frac{1}{n!} \int d \Omega_{n} \frac{d \sigma^{(n)}}{d \Omega_{n}} \Gamma_{n}\left(k_{1}, k_{2}, \ldots, k_{n}\right)+\ldots
\end{aligned}
$$

\square Conditions for IRS of $\mathbf{d} \sigma(\Gamma)$:

Where 「 ${ }_{n}\left(k_{1}, k_{2}, \ldots, k_{n}\right)$ are constraint functions and invariant under Interchange of n-particles

$$
\Gamma_{n+1}\left(k_{1}, k_{2}, \ldots,(1-\lambda) k_{n}^{\mu}, \lambda k_{n}^{\mu}\right)=\Gamma_{n}\left(k_{1}, k_{2}, \ldots, k_{n}^{\mu}\right) \quad \text { with } 0 \leq \lambda \leq 1
$$

Physical meaning:
Measurement cannot distinguish a state with a zero/collinear momentum parton from a state without the parton

Special case: $\Gamma_{n}\left(k_{1}, k_{2}, \ldots, k_{n}\right)=1$ for all $n \Rightarrow \sigma^{(\text {tot })}$

Thrust distribution

Thrust axis: \vec{u}

$$
-\frac{>}{T<1}<->\vec{u}
$$

$$
\begin{gathered}
T_{n}\left(p_{1}^{u}, p_{2}^{u}, \ldots, p_{n}^{u}\right)=\max _{\vec{u}}\left(\frac{\sum_{i=1}^{n} \vec{p}_{i} \cdot \vec{u}}{\sum_{i=1}^{n}\left|\vec{p}_{i}\right|}\right) \\
--\overline{T \sim 1}
\end{gathered}>\vec{u}
$$

\square Phase space constraint:

$$
\frac{d \sigma_{e^{+} e^{-} \rightarrow \text { hadrons }}}{d T} \quad \text { with } \quad \Gamma_{n}\left(p_{1}^{\mu}, p_{2}^{u}, \ldots, p_{n}^{\mu}\right)=\delta\left(T-T_{n}\left(p_{1}^{\mu}, p_{2}^{\mu}, \ldots, p_{n}^{\mu}\right)\right)
$$

\triangleleft Contribution from $\mathrm{p}=0$ particles drops out the sum
\triangleleft Replace two collinear particles by one particle does not change the thrust

$$
\left|(1-\lambda) \vec{p}_{n} \cdot \vec{u}\right|+\left|\lambda \vec{p}_{n} \cdot \vec{u}\right|=\left|\vec{p}_{n} \cdot \vec{u}\right|
$$

and

$$
\left|(1-\lambda) \vec{p}_{n}\right|+\left|\lambda \vec{p}_{n}\right|=\left|\vec{p}_{n}\right|
$$

N-Jettiness

\square Event structure:
$p p \rightarrow$ leptons plus jets
\square N-Jettiness:
(Stewart, Tackmann, Waalewijin, 2010)
$\tau_{N}=\sum_{k} \min _{i}\left\{\frac{2 q_{i} \cdot p_{k}}{Q_{i}}\right\}$

The sum include all final-state hadrons excluding more than \mathbf{N} jets
Allows for an event-shape based analysis of multi-jets events (a generalization of Thrust)
\square-infinitely narrow jets (jet veto): As a limit of N -Jettiness: $\quad \tau_{N} \rightarrow 0$ Generalization of the thrust distribution in $e^{+} e^{-}$ initial-state identified hadron!

The harder question

\square Question:
How to test QCD in a reaction with identified hadron(s)?

- to probe the quark-gluon structure of the hadron
\square Facts:
Hadronic scale $\sim 1 / \mathrm{fm} \sim \Lambda_{\text {QCD }}$ is non-perturbative
Cross section involving identified hadron(s) is not IR safe and is NOT perturbatively calculable!
\square Solution - Factorization:
\diamond Isolate the calculable dynamics of quarks and gluons
\triangleleft Connect quarks and gluons to hadrons via non-perturbative but universal distribution functions
- provide information on the partonic structure of the hadron

Observables with ONE identified hadron

Cross section is infrared divergent, and nonperturbative!

QCD factorization
 (approximation!)

Cross Section $=$ Infrared-Safe \otimes Nonperturbative-distribution

Measured

Universal-hadron structure

Backup slides

