The Q_{Weak} Experiment at Jefferson Lab: Searching for TeV Scale Physics by Measuring the Weak Charge of the Proton

Or, why measuring part-per-billion asymmetries to percent-level accuracy is really hard...

Wouter Deconinck

William & Mary

Supported by the NSF under Grant Nos. PHY-1206053 and PHY-1405857.

March 6, 2017 University of Tennessee, Knoxville Precision Electroweak Tests of the Standard Model

Electroweak Interaction Parity Symmetry and Parity Violation Parity-Violating Electron Scattering Measuring Small Asymmetries in Integration Mode

Parity-Violating Electroweak Experiments at Jefferson Lab

The Q_{Weak} Experiment Cryotarget Main Detectors Tracking Detectors Beam Polarimetry First Determination of Proton's Weak Charge Progress of Q_{Weak} Data Analysis

The MOLLER Experiment

PV-DIS and SoLID Experiments

Summary

There are Two Main Classes of Standard Model Tests

Current status of the Standard Model

Standard Model is an effective low-energy theory of the more fundamental underlying physics.

Complementary approaches to uncover the underlying physics

- Energy frontier: direct searches for new particles
- Precision or intensity frontier: indirect searches

Energy frontier

- Highest energies
- Few signature events
- E.g.: Tevatron, LHC

Precision or intensity frontier

- Modest or low energies
- High statistical power
- g 2, EDM, $\beta\beta$, rare decays
- Fundamental symmetries

Section 1

Precision Electroweak Tests of the Standard Model

Glashow-Weinberg-Salam theory of weak interaction

- Gauge symmetry: $SU(2)_L \times U(1)_Y$
- Gauge couplings: g for $SU(2)_L$, g' for $U(1)_Y$
- Left-handed leptons in doublets, right-handed in singlets
- Fundamental symmetry of left and right is broken

Parity symmetry is violated

- Weak interaction violates parity
- Electromagnetism satisfies parity
- Use parity-violation to measure internal electroweak parameters

Glashow-Weinberg-Salam theory of weak interaction

- Gauge symmetry: $SU(2)_L \times U(1)_Y$
- Gauge couplings: g for $SU(2)_L$, g' for $U(1)_Y$
- Left-handed leptons in doublets, right-handed in singlets
- Fundamental symmetry of left and right is broken

Parity symmetry is violated

- Weak interaction violates parity
- Electromagnetism satisfies parity
- Use parity-violation to measure internal electroweak parameters

Glashow-Weinberg-Salam theory of weak interaction

- Gauge symmetry: $SU(2)_L \times U(1)_Y$
- Gauge couplings: g for $SU(2)_L$, g' for $U(1)_Y$
- Left-handed leptons in doublets, right-handed in singlets
- Fundamental symmetry of left and right is broken

Electroweak symmetry breaking $(B_{\mu}, W^i_{\mu}
ightarrow A_{\mu}, Z^0_{\mu}, W^{\pm}_{\mu})$

- $A_{\mu}, Z^0_{\mu}, W^{\pm}_{\mu}$ are mixture of B_{μ} and W^i_{μ}
- Gauge field A_{μ} remains massless (photon)
- Gauge fields Z^0_μ, W^\pm_μ obtain mass (weak bosons)
- Weinberg angle θ_W describes how they mix

Glashow-Weinberg-Salam theory of weak interaction

- Gauge symmetry: $SU(2)_L \times U(1)_Y$
- Gauge couplings: g for $SU(2)_L$, g' for $U(1)_Y$
- Left-handed leptons in doublets, right-handed in singlets
- Fundamental symmetry of left and right is broken

Electroweak symmetry breaking $(B_{\mu}, W^i_{\mu}
ightarrow A_{\mu}, Z^0_{\mu}, W^{\pm}_{\mu})$

$$\sin^2 \theta_W = rac{g'^2}{g^2 + g'^2} = 0.23122 \pm 0.00015 \, ({
m at} \, M_Z) pprox rac{1}{4}$$

$$\begin{array}{lll} A_{\mu} &=& \cos\theta_{W} \cdot B_{\mu} + \sin\theta_{W} \cdot W_{\mu}^{3} & (\text{massless}) \\ Z_{\mu}^{0} &=& -\sin\theta_{W} \cdot B_{\mu} + \cos\theta_{W} \cdot W_{\mu}^{3} & (M_{Z} \approx 91.2 \, \text{GeV}) \\ W_{\mu}^{\pm} &=& (W_{\mu}^{1} \mp i W_{\mu}^{2})/\sqrt{2} & (M_{W} \approx 80.4 \, \text{GeV}) \end{array}$$

Glashow-Weinberg-Salam theory of weak interaction

- Gauge symmetry: $SU(2)_L \times U(1)_Y$
- Gauge couplings: g for $SU(2)_L$, g' for $U(1)_Y$
- Left-handed leptons in doublets, right-handed in singlets
- Fundamental symmetry of left and right is broken

Parity-violation neutral current $(g_V - \gamma_5 g_A)$

$$\begin{aligned} \mathcal{L}_{PV}^{NC} &= -\frac{G_F}{\sqrt{2}} \quad \left[g_A^e \left(\bar{e} \gamma_\mu \gamma_5 e \right) \cdot \sum_q g_V^q \left(\bar{q} \gamma^\mu q \right) \right. \\ &+ g_V^e \left(\bar{e} \gamma_\mu e \right) \cdot \sum_q g_A^q \left(\bar{q} \gamma^\mu \gamma_5 q \right) \right] \\ &= -\frac{G_F}{2\sqrt{2}} \quad \left[\sum_q C_{1q} \left(\bar{e} \gamma_\mu \gamma_5 e \right) \cdot \left(\bar{q} \gamma^\mu q \right) \right. \\ &+ \sum_q C_{2q} \left(\bar{e} \gamma_\mu e \right) \cdot \left(\bar{q} \gamma^\mu \gamma_5 q \right) \right] \end{aligned}$$

Electroweak Vector Charge of the Proton is Suppressed

Parity-violating electron scattering couplings

- Weak vector quark coupling: $C_{1q} = 2g_A^e g_V^q (\gamma^5 \text{ on } e \text{ vertex})$
- Weak axial quark coupling: $C_{2q} = 2g_V^e g_A^q (\gamma^5 \text{ on } q \text{ vertex})$

Particle	Electric charge	Weak vector charge $(\sin^2 heta_W pprox rac{1}{4})$
u	$+\frac{2}{3}$	$-2C_{1u} = +1 - \frac{8}{3}\sin^2\theta_W \approx +\frac{1}{3}$
d	$-\frac{1}{3}$	$-2C_{1d} = -1 + \frac{4}{3}\sin^2\theta_W \approx -\frac{2}{3}$
p(uud)	+1	$Q_W^p = 1 - 4 \sin^2 heta_W pprox 0$
n(udd)	0	$Q^n_{W}=-1$

Proton's weak vector charge Q_W^p is approximately zero

Accidental suppression of the proton's weak charge in Standard Model makes it more sensitive to new physics!

Access to these weak vector charges by using parity-violation

We Use Spin to Access Weak Charges in Parity-Violation

Parity transformation: Inversion of spatial vectors $ec{v}
ightarrow - ec{v}$

• No change in the sign for angular momentum vectors (\vec{S})

Tests using parity-violating electron scattering

- Polarized electrons (spin \vec{S}) on unpolarized target
- Instead of inverting $\vec{r} \rightarrow -\vec{r}$, $\vec{p} \rightarrow -\vec{p}$, but keeping $\vec{S} = \vec{S}$, we leave \vec{r} and \vec{p} unchanged but flip polarization or spin \vec{S}

Asymmetry A_{PV} between left and right scattering off nucleons

We Use Spin to Access Weak Charges in Parity-Violation

Parity transformation: Inversion of spatial vectors $ec{v}
ightarrow - ec{v}$

• No change in the sign for angular momentum vectors (\vec{S})

Tests using parity-violating electron scattering

- Polarized electrons (spin \vec{S}) on unpolarized target
- Instead of inverting $\vec{r} \rightarrow -\vec{r}$, $\vec{p} \rightarrow -\vec{p}$, but keeping $\vec{S} = \vec{S}$, we leave \vec{r} and \vec{p} unchanged but flip polarization or spin \vec{S}

Asymmetry A_{PV} between left and right scattering off nucleons

Difference in Cross Section is Encoded in Asymmetry.

Parity-violating asymmetry in electron scattering

• Difference between left- and right-handed scattering yield

$$A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L}$$

- Electromagnetic component is identical, hence subtracted out
- Parity-violating electroweak and new physics remains in A_{PV}

Parity-Violating Asymmetry Reduces to the Weak Charge

Asymmetry between left and right helicity

$$A_{PV} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} \quad \text{with} \quad \sigma = \left| \begin{array}{c} e & e' \\ \hline q & q' \end{array} + \begin{array}{c} e & e' \\ \hline q & q' \end{array} \right|^2$$

Interference of photon and weak boson exchange

$$\mathcal{M}^{EM} \propto \frac{1}{Q^2} \qquad \mathcal{M}^{NC}_{PV} \propto \frac{1}{M_Z^2 + Q^2}$$
$$A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \propto \frac{\mathcal{M}^{NC}_{PV}}{\mathcal{M}^{EM}} \propto \frac{Q^2}{M_Z^2} \quad \text{when } Q^2 \ll M_Z^2$$

Parity-Violating Asymmetry Reduces to the Weak Charge

Asymmetry between left and right helicity

$$A_{PV} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} \quad \text{with} \quad \sigma = \left| \begin{array}{c} e & e' \\ \hline \gamma \\ \hline q & q' \end{array} + \begin{array}{c} e & e' \\ \hline Z \\ \hline q & q' \end{array} \right|^2$$

Interference of photon and weak boson exchange for protons

$$A_{PV}(p) = \frac{-G_F Q^2}{4\pi\alpha\sqrt{2}} \left[\frac{\epsilon G_E G_E^Z + \tau G_M G_M^Z - (1 - 4\sin^2\theta_W)\epsilon' G_M G_A^Z}{\epsilon(G_E)^2 + \tau(G_M)^2} \right]$$

In the forward elastic limit $Q^2
ightarrow 0$, heta
ightarrow 0 (plane wave)

$$A_{PV}(p) \xrightarrow{Q^2 \to 0} rac{-G_F Q^2}{4\pi \alpha \sqrt{2}} \left[rac{Q_W^p}{W} + Q^2 \cdot B(Q^2)
ight] pprox -230 \, {
m ppb} \propto Q_W^p$$

Parity-Violating Asymmetry Reduces to the Weak Charge

Asymmetry between left and right helicity

$$A_{PV} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} \quad \text{with} \quad \sigma = \left| \begin{array}{c} e & e' \\ \hline \gamma \\ \hline q & q' \end{array} + \begin{array}{c} e & e' \\ \hline Z \\ \hline q & q' \end{array} \right|^2$$

Interference of photon and weak boson exchange for electrons

$$A_{PV}(e) = mE \frac{G_F}{\pi \alpha \sqrt{2}} \left[\frac{4 \sin^2 \theta}{(3 + \cos^2 \theta)^2} \right] Q_W^e$$

Direct connection from asymmetry to weak charge of electron $A_{PV}(e) pprox 35 \ {
m ppb} \propto Q_W^e$

No hadronic uncertainty due to $B(Q^2)$ form factor term

Strategy to Measure Parts-Per-Billion: All The Events!

Event versus integration mode

- Event mode (the good ol' nuclear/particle way)
 - each event individually registered
 - event selection or rejection possible

- Integrating mode (current mode)
 - high event rates possible (event every nanosecond!)
 - no suppression of background events possible

We Measure Time-Dependent Integrated Detector Signal

- Collect many polarization windows: 2 year long experiment
- Counting mode at 1 MHz would have taken 7000 years...

We Measure Time-Dependent Integrated Detector Signal

- Collect many polarization windows: 2 year long experiment
- Counting mode at 1 MHz would have taken 7000 years...

We Measure Time-Dependent Integrated Detector Signal

- Collect many polarization windows: 2 year long experiment
- Counting mode at 1 MHz would have taken 7000 years...

Section 2

Parity-Violating Electroweak Experiments at Jefferson Lab

Parity-Violating Electroweak Experiments at Jefferson Lab

Q_{Weak} Experiment

- Measurement of Q^p_W in $ec{e} p
 ightarrow e' p$ on protons in hydrogen
- Completed, preliminary results, full results in Fall 2017
- Ongoing analysis effort, constitutes the bulk of this talk

MOLLER Experiment

- Measurement of Q_W^e in $\vec{e}e \rightarrow e'e$ on electrons in hydrogen
- Planned for running at Jefferson Lab 12 GeV

PV-DIS and SoLID Experiments

- Measurement of $C_{1,2q}$ in $\vec{e}p \rightarrow e'p$ on hydrogen, deuterium
- Completed at 6 GeV, planned at Jefferson Lab 12 GeV

Where is Jefferson Lab?

Newport News, Virginia

What is Jefferson Lab?

Jefferson Lab Overview

Section 3

The Q_{Weak} Experiment

The Q_{Weak} Experiment: Overview

- Precision measurement of a quantity suppressed by fundamental symmetries (Q^p_W ≈ 0, asymmetry of 230 ppb)
- Elastic scattering of electron beam on proton target to measure the proton weak charge Q^p_W to a precision of 4%

Pushing the envelope of intensity (more events)

- Higher beam current (150 μ A versus usually < 100 μ A)
- Longer cryo-target (35 cm versus 20 cm)
- Higher event rates up to 800 MHz (integration)

Pushing the envelope of precision (better measurements)

- Electron beam polarization precision of 1% at $1\,\text{GeV}$
- Helicity-correlated asymmetries at ppb level

The Q_{Weak} Experiment: Overview

Collimator-Magnet-Collimator focusing spectrometer

"The Qweak Experimental Apparatus," NIM A 781, 105 (2015); http://dx.doi.org/10.1016/j.nima.2015.01.023

The Q_{Weak} Experiment: Overview

Collimator-Magnet-Collimator focusing spectrometer

"The Qweak Experimental Apparatus," NIM A 781, 105 (2015); http://dx.doi.org/10.1016/j.nima.2015.01.023

The Q_{Weak} Experiment: High Power Cryotarget

Operational Parameters

- Transverse flow: 2.8 m/s
- Target length: 35 cm
- Beam current: 150 μA
- Heating power: 2.5 kW

Design with CFD

The Q_{Weak} Experiment: High Power Cryotarget

Low-frequency 'boiling' noise

- Helicity flip rate 960 Hz \rightarrow 240 Hz (quartet cycles)
- Target density fluctuations at low frequencies occur
- Power spectrum of signal

Current dependence

- Additional noise smaller than statistical width
- Consistent for different current and beam rasters
- Current to $180 \,\mu\text{A}$

The Q_{Weak} Experiment: Main Detector

Preradiated Čerenkov detector bars

- + 8 fused silica radiators, 2 m long \times 18 cm \times 1.25 cm
- Pb preradiator tiles to reduce low-energy tracks (neutrals)
- Light collection: total internal reflection
- 5 inch PMTs with gain of 2000, low dark current
- 800 MHz electron rate per bar, defines counting noise

The Q_{Weak} Experiment: Kinematics in Event Mode Reasons for a tracking system?

- Determine Q^2 , note: $A_{meas} \propto Q^2 \cdot \left(Q^p_W + Q^2 \cdot B(Q^2)\right)$
- Main detector light output and Q^2 position dependence
- Contributions from inelastic background events

Instrumentation of only two octants

- Horizontal drift chambers for front region (Va Tech)
- Vertical drift chambers for back region (W&M)
- Rotation allows measurements in all eight octants

Track reconstruction

- Straight tracks reconstructed in front and back regions
- Front and back partial tracks bridged through mag field

The Q_{Weak} Experiment: Improved Beam Polarimetry

Requirements on beam polarimetry

- Largest experimental uncertainty in Q_{Weak} experiment
- Systematic uncertainty of 1% (on absolute measurements)

Upgrade existing Møller polarimeter $(\vec{e} + \vec{e} \rightarrow e + e)$

- Scattering off atomic electrons in magnetized iron foil
- Limited to separate, low current runs ($I \approx 1 \, \mu {\sf A}$)

Construction new Compton polarimeter $(\vec{e} + \vec{\gamma} \rightarrow e + \gamma)$

- Compton scattering of electrons on polarized laser beam
- Continuous, non-destructive, high precision measurements

The Q_{Weak} Experiment: Improved Beam Polarimetry

Compton polarimeter

- Beam: $150 \,\mu\text{A}$ at $1.165 \,\text{GeV}$
- Chicane: interaction region 57 cm below straight beam line
- Laser system: 532 nm green laser
 - 10 W CW laser with low-gain cavity
- Photons: PbWO₄ scintillator in integrating mode
- Electrons: Diamond strips with 200 μ m pitch

The Q_{Weak} Experiment: Beam Polarimetry

Møller polarimetry

- New beamline, refurbished
- Invasive measurements
- Polarization larger than anticipated: 86% to 88%

Compton polarimetry

- Excellent performance
- Continuous measurements
- Operates at full $180 \, \mu \text{A}$
- Great statistical precision

Data Quality: Slow Helicity Reversal

 $\lambda/2\text{-plate}$ and Wien filter changes

- Insertable λ /2-plate (IHWP) in injector allows 'analog' flipping helicity frequently
- Wien filter: another way of flipping helicity (several weeks)
- Each 'slug' of 8 hours consists of same helicity conditions

- Preliminary asymmetries: 60 ppb blinded, not corrected, not regressed! And only 8 of hundreds of slugs...
- Average asymmetries are consistent with sign change
Weak Charge in Preliminary Agreement with Prediction

First results based on subset of the data in 2013

- Publication in Phys. Rev. Lett. 111, 141803 (2013)
- Based on only 4% of the total data set: first experiment with direct access to proton's weak charge
- 25 times more data available: projected release in Fall 2017

Global analysis method by Young, Roche, Carlini, Thomas

- Fit of parity-violating asymmetry data on H, D, ⁴He, up to $Q^2 = 0.63 \text{ GeV}^2$, and rotated to zero forward angle
- Free parameters were C_{1u} , C_{1d} , strange charge radius ρ_s and magnetic moment μ_s , and isoscalar axial form factor (zero at tree level)
 - $Q_W^p(\text{PVES}) = 0.064 \pm 0.012$ (our result with world data)
 - $Q_W^p(SM) = 0.0710 \pm 0.0007$ (theoretical expectation)

First Determination of the Weak Charge of the Proton

Intercept of reduced asymmetry at $Q^2 = 0$ $\overline{A_{PV}} = \frac{A_{PV}}{A_0} = Q_W^p + Q^2 \cdot B(Q^2, \theta = 0)$ with $A_0 = -\frac{G_F Q^2}{4\pi\alpha\sqrt{2}}$

Determination of the Weak Charge of the Proton

Extraction from just parity-violating electron scattering, including the new Q_{Weak} results

$$Q_W^p(PVES) = 0.064 \pm 0.012$$

In agreement with prediction in the Standard Model

 $Q_W^p(SM) = 0.0710 \pm 0.0007$

Determination of the Weak Vector Charges of the Quarks

Determination of the Electroweak Mixing Angle

Determination of the Weak Vector Charges of the Quarks

Global fit of all atomic and electron scattering data

- Determination of weak charge of the proton
 - $Q_W^{p}(\text{PVES}+\text{APV}) = 0.063 \pm 0.012$
 - $Q_W^p(SM) = 0.0710 \pm 0.0007$
- Extraction of weak vector quark couplings possible
 - $C_{1u} = -0.1835 \pm 0.0054$
 - $C_{1d} = 0.3355 \pm 0.0050$
- Determination of weak charge of the neutron
 - Q_W^n (PVES+APV) = -0.975 ± 0.010
 - $Q_W^n(SM) = -0.9890 \pm 0.0007$

Largest Uncertainties in Preliminary Q_{Weak} Result?

All uncertainties in ppb	ΔA_{corr}		$\delta(A_{PV})$
Beam polarization P	-21		5
Kinematics <i>R_{total}</i>	5		9
Dilution $1/(1-\sum f_i)$	-7		
Beam asymmetry	-40		13
Transverse pol. A_T	0		5
Detector non-linearity	0		4
Backgrounds:		$\delta(f_i)$	$\delta(A_i)$
Aluminum (<i>b</i> ₁)	-58	4	8
Beamline (b_2)	11	3	23
Neutrals (b_3)	0	1	1
Inelastic (b_4)	1	1	1

$$A_{PV} = R_{total} rac{rac{A_{msr}}{P} - \sum f_i A_i}{1 - \sum f_i}$$

Largest Uncertainties in Preliminary Q_{Weak} Result?

All uncertainties in ppb	ΔA_{corr}		$\delta(A_{PV})$
Beam polarization P	-21		5
Kinematics <i>R_{total}</i>	5		9
Dilution $1/(1-\sum f_i)$	-7		
Beam asymmetry	-40		13
Transverse pol. A_T	0		5
Detector non-linearity	0		4
Backgrounds:		$\delta(f_i)$	$\delta(A_i)$
Aluminum (<i>b</i> ₁)	-58	4	8
Beamline (b_2)	11	3	23
Neutrals (b_3)	0	1	1
Inelastic (b_4)	1	1	1

$$A_{PV} = R_{total} rac{A_{mst}}{P} - \sum_{i} f_i A_i}{1 - \sum_{i} f_i}$$

Helicity-Correlated Beam Properties Are Understood Measured asymmetry depends on beam position, angle, energy

- Well-known and expected effect for PVES experiments
- "Driven" beam to check sensitivities from "natural" jitter

Helicity-Correlated Beam Properties Are Understood Sensitivities are used to correct measured asymmetry

- $A_{corr} = \sum_{i} \frac{\partial A}{\partial x_i} \Delta x_i$ with beam parameters i = x, y, x', y', E
- Sensitivities (derivatives) from simultaneous regression fits

Excellent agreement between natural and driven beam motion

Run2 measured asymmetry

- Figure includes about 50% of total dataset for Q_{Weak} experiment
- No other corrections applied to this data

However, Some Beamline Background Correlations Remain After regression, correlation with background detectors

- Luminosity monitors & spare detector in super-elastic region
- Background asymmetries of up to 20 ppm (that's huge!)

Figure 6.19: The correlation between MDall and USLsum asymmetries in the Sign-corrected formulation, averaged at the slug scale over the Run2 Modulation dataset. The extracted correlation slope is the correction factor C_{MLUSL} for the BB correction (6.6).

However, Some Beamline Background Correlations Remain Hard work by grad students: now understood, under control

- Partially cancels with slow helicity reversal (half-wave plate)
- Likely caused by large asymmetry in small beam halo or tails
- Scattering off the beamline and/or "tungsten plug"

Qualitatively new background for PVES experiments at JLab

- Second regression using asymmetry in background detectors
- Measurements with blocked octants to determine dilution factor ($f_{b_2}^{MD} = 0.19\%$)

Beamline Background Corrections Are Under Control Beamline background correction improve statistical consistency

Qweak Run 2 - Blinded Asymmetries

(statistics only - not corrected for beam polarization, AI target windows, ΔQ^2 , etc.)

Sensitivity to New Physics

New parity-violating physics

- Consider effective contact interaction
- Coupling constant g, mass scale Λ
- Effective charges $h_V^u = \cos \theta_h$ and $h_V^d = \sin \theta_h$

Effective Lagrangian (Erler et al., PRD 68, 016006 (2003))

$$\mathcal{L}_{e-q}^{PV} = \mathcal{L}_{SM}^{PV} + \mathcal{L}_{New}^{PV}$$

$$= -\frac{G_F}{\sqrt{2}} \overline{e} \gamma_{\mu} \gamma_5 e \sum_q C_{1q} \overline{q} \gamma^{\mu} q + \frac{g^2}{4\Lambda^2} \overline{e} \gamma_{\mu} \gamma_5 e \sum_q h_q^V \overline{q} \gamma^{\mu} q$$

Sensitivity to New Physics

Determination of weak charge of the proton

- Assume agreement with Standard Model within ΔQ^p_W
- What are the limits on $\frac{\Lambda}{g}$?

Limits on new physics energy scale

$$rac{\Lambda}{g} = rac{1}{2} \left(\sqrt{2} G_F \Delta Q_W^p
ight)^{-1/2}$$

- Limits from $\Delta Q_W^p = 0.005$: $\frac{\Lambda}{g} > 1.7 \text{ TeV}$ at 1σ
- For comparison with LHC results: $g^2 = 4\pi$
- Lower limit $\Lambda > 5.4 \text{ TeV}$ at 95% C.L.

Progress on Q_{Weak} Data Analysis

A lot of progress has been made already

- Completed data-taking in May 2012
- Published first determination of proton's weak charge and global analysis in PRL in October 2013
 - $Q^p_W(PVES+APV)=0.063\pm0.012$ with only 4% of the data

Unprecedented precision come with inevitable surprises

- Blind analysis precludes "incremental" preliminary results
- Discovered qualitatively new "beamline background" noise
- Discovered another qualitatively new systematic (non-noise) background

Progress on Q_{Weak} Data Analysis

A lot of progress has been made already

- Discovered another qualitatively new systematic (non-noise) background
 - Various microscopic explanations consistent with effect
 - Geant4 simulations & detector post-mortems on-going
 - Confident that we can understand this effect better

The Q_{Weak} Experiment: Timeline

- Double-scattering effect studies were our last hangup
- Unblinding: March 31, 2017
- Publication and release during the summer/fall (DNP meeting)
- Stay tuned!

The *Q_{Weak}* Experiment: Projections Reduced parity-violating asymmetry

- This was all with only 4% of total data!
- Projected result with full data set (25 times more data)

The Q_{Weak} Experiment: Projections Reduced parity-violating asymmetry

- This was all with only 4% of total data!
- Projected result with full data set (25 times more data)

The Q_{Weak} Experiment: Ancillary Measurements

Upcoming ancillary results

- Aluminum parity-violating asymmetry
- Elastic transverse asymmetry (two-photon exchange effects)
- Nuclear-elastic transverse asymmetry (Coulomb interaction)
- $N
 ightarrow \Delta$ asymmetry at two beam energies
- Transverse asymmetry in Δ production
- Non-resonant inelastic parity-violating asymmetry (γZ box diagram)
- Non-resonant inelastic transverse asymmetry
- Pion photoproduction parity-violating asymmetries
- Pion photoproduction transverse asymmetries

Section 4

The MOLLER Experiment

The MOLLER Experiment

Measurement of the electroweak mixing angle at low energy

- Elastic scattering of electrons on electrons in hydrogen
- Precision measurement of the weak charge of the electron $Q_W^e \approx 0$ at 11 GeV
 - Asymmetry $A_{PV} \approx 35.6 \text{ ppb}$, with precision $\delta A_{PV} = \pm 0.7 \text{ ppb}$
 - Precision $\delta Q_W^e \approx \pm 2.1\%$, $\delta \sin^2 \theta_W = \pm 0.1\%$

Pushing the envelope of intensity (more events)

- Even higher luminosity: $85 \,\mu\text{A}$ on $1.5 \,\text{m}$ long cryo-target
- Event rates up to 150 GHz (integrated, of course)

Pushing the envelope of precision

• Electron beam polarization precision of 0.4% at 11 GeV

The MOLLER Experiment

Experimental Layout

- Long, narrow hybrid toroidal spectrometer system to select very forward events
- Focusing of ee and ep on segmented quartz detector rings

The MOLLER Experiment

Experimental Layout

- Long, narrow hybrid toroidal spectrometer system to select very forward events
- Focusing of *ee* and *ep* on segmented quartz detector rings

Section 5

PV-DIS and SoLID Experiments

PV-DIS and SoLID Experiments

Analogy with Deep Inelastic Scattering

$$\frac{d^2\sigma}{d\Omega dE'} = \frac{\alpha^2}{4E^2 \sin^4 \frac{\theta}{2}} \left(\frac{2}{M}F_1(x) \sin^2 \frac{\theta}{2} + \frac{1}{\nu}F_2(x) \cos^2 \frac{\theta}{2}\right)$$

Quark structure through $\ensuremath{\text{DIS}}$

•
$$F_2(x) = x \sum_q e_q^2(q + \bar{q}) \approx 2xF_1(x)$$
 (Callan-Gross)

Quark structure through **PV-DIS**: interference of γZ

•
$$F_2^{\gamma Z}(x) = x \sum_q e_q g_q^V(q + \bar{q}) \to a_1(x) \sim \sum_q e_q C_{1q}(q + \bar{q})$$

•
$$F_3^{\gamma Z}(x) = x \sum_q e_q g_q^A(q-\bar{q}) \rightarrow a_3(x) \sim \sum_q e_q C_{2q}(q-\bar{q})$$

PV-DIS and SoLID Experiments

Recent Results from PV-DIS at 6 GeV

- Published in Nature 506, p67 (February 2014)
- First evidence at 95% C.L. that the weak axial quark couplings C_{2q} are non-zero (as predicted by the Standard Model)
- Exclusion limits for contact interactions $\Lambda^->4.8\,\text{TeV}$ and $\Lambda^+>5.8\,\text{TeV}$

PV-DIS and SoLID Experiments

Solenoidal Large Intensity Device

- 2 GeV
- $2 \, {\rm GeV}^2 < Q^2 < 10 \, {\rm GeV}^2$
- 0.2 < x < 1
- 40% azimuthal acceptance
- $\mathcal{L} \approx 5 \cdot 10^{35} \, \mathrm{s}^{-1} \mathrm{cm}^{-2}$

Experimental design

- Counting mode at rate > 200 kHz, 30 independent sectors
- Baffles filter low energy and neutral particles (no line of sight)
- Light gas Čerenkov for 1000–200 : 1 rejection of low-E π^-
- Electromagnetic calorimeter for 50 : 1 π^- rejection

PV-DIS and SoLID Experiments: Weak Axial Couplings

Projected Precision on C_{1q} and C_{2q} Couplings

Section 6

Summary

Summary

The Q_{Weak} experiment

- Elastic \vec{e} -p scattering on liquid hydrogen target
- Precision measurement of a proton weak charge $Q_W^p \approx 0$, quantity suppressed by fundamental symmetries
- First determination of the weak charge of the proton
 - With only 4% of the full data set
 - $Q_W^p(PVES + APV) = 0.063 \pm 0.012$
 - Weak charge is in agreement with Standard Model
- Results from full data set anticipated in fall 2014

Broad program of electroweak precision measurements

- PV-DIS: weak axial quark couplings are non-zero at 95% C.L.
- MOLLER, SoLID: precision measurements of mixing angle and weak quark couplings

Additional Material

Section 7

Parity-Violating and Parity-Conserving Nuclear Asymmetries

Ancillary Measurements: Aluminum Target Walls

Aluminum asymmetry (preliminary)

• Asymmetry consistent with order of magnitude expected

- Asymmetry: few ppm
- Dilution f of 3%
- Correction $\approx 20\%$

Dilution measurement (preliminary)

Ancillary Measurements: Inelastic Transitions

$N \rightarrow \Delta$ asymmetry (projected)

- In analysis, no result yet
- Expected precision 1 ppm
- $Q^2 = 0.025 \, \text{GeV}^2$

- Asymmetry: few ppm
- Dilution *f* of 0.1%
- Correction pprox 1%

Simulation benchmark (preliminary)

Ancillary Measurements: Inelastic Transitions

$N \rightarrow \Delta$ asymmetry (projected)

- In analysis, no result yet
- Expected precision 1 ppm
- $Q^2 = 0.025 \, \text{GeV}^2$

- Asymmetry: few ppm
- Dilution *f* of 0.1%
- Correction pprox 1%

Simulation benchmark (preliminary)

- In main measurement, not 100% longitudinal polarization
- Transversely polarized beam (H or V) on unpolarized target
- Parity-conserving, T-odd transverse asymmetry of order ppm

$$B_n = \frac{2\Im(T_{1\gamma}^* \cdot T_{2\gamma})}{|T_{1\gamma}|^2}$$

- Access to imaginary part of 2-photon exchange amplitude $T_{2\gamma}$
- Extensive transverse spin program:
 - elastic $\vec{e}p$ in H, C, Al at E = 1.165 GeV
 - inelastic $\vec{e}p \rightarrow \Delta$ in H, C, Al at E = 0.877 GeV and 1.165 GeV
 - elastic $\vec{e}e$ in H at E = 0.877 GeV
 - deep inelastic $\vec{e}p$ in H at W = 2.5 GeV
 - pion electro-production in H at $E = 3.3 \,\text{GeV}$

- Vertical and horizontal polarization: 90° phase shift
- Observe the expected cancellation with slow helicity reversal

- Vertical and horizontal polarization: 90° phase shift
- Observe the expected cancellation with slow helicity reversal

- Shown asymmetries not corrected for backgrounds or polarization
- Preliminary transverse asymmetry in $\vec{e}p$ in hydrogen: $B_n = -5.35 \pm 0.07(\text{stat}) \pm 0.15(\text{syst}) \text{ ppm}$
- More precise than any other measurement by a factor 5
- Theory: Pasquini & Vanderhaeghen, Afanasev & Merenkov, Gorchtein

Theoretical interpretation

 Theory: Pasquini & Vanderhaeghen, Afanasev & Merenkov, Gorchtein

Aluminum: non-zero transverse asymmetry (uncorrected data)

- Aluminum target was alloy with 10% contamination
- Needs corrections for quasielastic and inelastic scattering, and for nuclear excited states(?)

Projected uncertainties for C and Al transverse asymmetries

- Theory from Phys. Rev. C77, 044606 (2008)
- Pb data from PRL 109, 192501 (2012)

Data Quality: Understanding the Width

Battery width

Measurement

- 240 Hz helicity quartets
 (+ -+ or + +-)
- Uncertainty = RMS/\sqrt{N}
- 200 ppm in 4 milliseconds
- $\bullet\ <1\,\text{ppm}$ in $5\,\text{minutes}$

Asymmetry width

- Pure counting statistics $\approx 200\,\text{ppm}$
- + detector resolution pprox 90 ppm
- + current monitor pprox 50 ppm
- + target boiling pprox 57 ppm
- = observed width pprox 233 ppm

Data Quality: Helicity-Correlated Beam Properties

Natural beam motion

- Measured asymmetry correlated with beam position and angles
- False asymmetries
- Linear regression removes effect: $A_{c} = \sum_{i} \frac{\partial A}{\partial x_{i}} \Delta x_{i}$ i = x, y, x', y', E

Data Quality: Helicity-Correlated Beam Properties

Driven beam motion

- Deliberate motion
- i = x, y, x', y', E

- Sensitivity slopes $\frac{\partial A}{\partial x_i}$ determined from natural beam motion or from beam modulation \rightarrow results consistent between methods
- Actual regression corrections smaller than specifications

Section 8

First Results from the Q_{Weak} Experiment

- Transversely polarized beam on unpolarized target
- Parity-conserving (T-odd) transverse asymmetry of order ppm

$$B_n = \frac{2\Im(T_{1\gamma}^* \cdot T_{2\gamma})}{|T_{1\gamma}|^2}$$

- Access to imaginary part of 2-photon exchange amplitude $\mathcal{T}_{2\gamma}$
- False asymmetry for parity-violating asymmetry A_{PV} due to residual transverse polarization and broken azimuthal symmetry

- Vertical polarization: cancellation with helicity reversal
- Horizontal polarization: 90° phase shift from vertical
- Shown asymmetries not corrected for backgrounds or polarization
- Preliminary transverse asymmetry: $B_n = -5.27 \pm 0.07(\text{stat}) \pm 0.14(\text{syst}) \text{ pp}$
- Transverse asymmetry leakage in $A_{PV} < 2 \text{ ppb}$

- Vertical polarization: cancellation with helicity reversal
- Horizontal polarization: 90° phase shift from vertical
- Shown asymmetries not corrected for backgrounds or polarization
- Preliminary transverse asymmetry: $B_n = -5.27 \pm 0.07(\text{stat}) \pm 0.14(\text{syst}) \text{ ppm}$
- Transverse asymmetry leakage in A_{PV} < 2 ppb

- Vertical polarization: cancellation with helicity reversal
- Horizontal polarization: 90° phase shift from vertical
- Shown asymmetries not corrected for backgrounds or polarization
- Preliminary transverse asymmetry:

 $B_n=-5.27\pm0.07(ext{stat})\pm0.14(ext{syst})\, ext{ppm}$

• Transverse asymmetry leakage in A_{PV} < 2 ppb

- Pasquini & Vanderhaeghen: proton and πN, resonance region with MAID, asymmetry dominated by inelastic contribution
- Afanasev & Merenkov: forward Compton amplitudes from real photo-production
- $E = 1.160 \text{ GeV}, \ \theta = 7.8^{\circ}, \ Q^2 = 0.026 \text{ GeV}^2$
- Other measurements: 0.877 GeV and 3.36 GeV, on Al and C

- Pasquini & Vanderhaeghen: proton and πN, resonance region with MAID, asymmetry dominated by inelastic contribution
- Afanasev & Merenkov: forward Compton amplitudes from real photo-production
- $E = 1.160 \text{ GeV}, \ \theta = 7.8^{\circ}, \ Q^2 = 0.026 \text{ GeV}^2$
- Other measurements: 0.877 GeV and 3.36 GeV, on Al and C

- Pasquini & Vanderhaeghen: proton and πN, resonance region with MAID, asymmetry dominated by inelastic contribution
- Afanasev & Merenkov: forward Compton amplitudes from real photo-production
- $E = 1.160 \text{ GeV}, \ \theta = 7.8^{\circ}, \ Q^2 = 0.026 \text{ GeV}^2$
- Other measurements: 0.877 GeV and 3.36 GeV, on Al and C

First Determination of the Weak Charge of the Proton

First results

- Publication in Phys. Rev. Lett. 111, 141803 (2013)
- Based on only 4% of the total data set: first experiment with direct access to proton's weak charge
- 25 times more data available: projected release in fall 2014

Global analysis method by Young, Roche, Carlini, Thomas

- Fit of parity-violating asymmetry data on H, D, ⁴He, up to $Q^2 = 0.63 \,\text{GeV}^2$, and rotated to zero forward angle
- Free parameters were C_{1u} , C_{1d} , strange charge radius ρ_s and magnetic moment μ_s , and isoscalar axial form factor (zero at tree level)

Determination of the Weak Charge of the Proton

Reduced parity-violating asymmetry $\overline{A_{PV}} = \frac{A_{PV}}{A_0} = Q_W^p + Q^2 \cdot B(Q^2, \theta = 0)$ with $A_0 = -\frac{G_F Q^2}{4\pi\alpha\sqrt{2}}$

Section 9

Summary

Different experiments sensitive to different extensions

Data Quality: Understanding the Width

Battery width

Measurement

- 240 Hz helicity quartets
 (+ -+ or + +-)
- Uncertainty = RMS/\sqrt{N}
- 200 ppm in 4 milliseconds
- $\bullet\ <1\,\text{ppm}$ in $5\,\text{minutes}$

Asymmetry width

- Pure counting statistics $\approx 200\,\text{ppm}$
- + detector resolution pprox 90 ppm
- + current monitor pprox 50 ppm
- + target boiling pprox 57 ppm
- = observed width pprox 233 ppm

Horizontal drift chambers

- 32 wires in 0.5 m wide planes
- 12 planes per octant
- 2 instrumented octants
- Constructed at Va Tech

Vertical drift chambers

- 181 wires in 2 m long planes
- 4 planes per octant (65° tilt)
- 2 instrumented octants
- Constructed at W&M

Horizontal drift chambers

- 32 wires in 0.5 m wide planes
- 12 planes per octant
- 2 instrumented octants
- Constructed at Va Tech

Vertical drift chambers

- 181 wires in 2 m long planes
- 4 planes per octant (65° tilt)
- 2 instrumented octants
- Constructed at W&M

Reconstruction of angle θ (preliminary)

Reconstruction of momentum transfer Q^2 (preliminary)

- Periodic tracking runs at 50 pA (HDC/VDC) to few nA (VDC)
- VDC track resolution of $250 \,\mu m$ meets design goal
- HDC track resolution of 350 μm (work ongoing)
- Required precision of 0.5% on value of Q^2 achievable

Simulation of electrons hitting main detector bar

Projection of reconstructed tracks to detector bar

Focal plane scanner detector (1 cm square quartz)

Data Quality: Helicity-Correlated Beam Properties

Natural beam motion

- Measured asymmetry correlated with beam position and angles
- False asymmetries
- Linear regression removes effect: $A_{c} = \sum_{i} \frac{\partial A}{\partial x_{i}} \Delta x_{i}$ i = x, y, x', y', E

Data Quality: Helicity-Correlated Beam Properties

Driven beam motion

- Deliberate motion
- i = x, y, x', y', E

- Sensitivity slopes $\frac{\partial A}{\partial x_i}$ determined from natural beam motion or from beam modulation \rightarrow results consistent between methods
- Actual regression corrections smaller than specifications

Lower bound on new physics (95% CL)

Constraints from

- Atomic PV: $\frac{\Lambda}{g} > 0.4 \ TeV$
- PV electron scattering: $\frac{\Lambda}{g} > 0.9 \ TeV$

Projection Q_{Weak}

• $\frac{\Lambda}{g} > 2 \ TeV$ • 4% precision

Figure: Young, Carlini, Thomas, Roche (2007)

Lower bound on new physics (95% CL)

Constraints from

- Atomic PV: $\frac{\Lambda}{g} > 0.4 \ TeV$
- PV electron scattering: $\frac{\Lambda}{g} > 0.9 \ TeV$

Projection Q_{Weak}

• $\frac{\Lambda}{g} > 2 \ TeV$ • 4% precision

Figure: Young, Carlini, Thomas, Roche (2007)

Lower bound on new physics (95% CL)

Constraints from

- Atomic PV: $\frac{\Lambda}{g} > 0.4 \ TeV$
- PV electron scattering: $\frac{\Lambda}{g} > 0.9 \ TeV$

Projection Q_{Weak}

- $\frac{\Lambda}{g} > 2 \ TeV$
- 4% precision

Figure: Young, Carlini, Thomas, Roche (2007)

Different experiments sensitive to different extensions

Parity-Violating Electron Scattering: Quark Couplings

Weak vector charge *uud* $Q_W^p = -2(2C_{1u} + C_{1d})$

Early experiments

SLAC and APV

Electron scattering

- HAPPEx, GO
- PVA4/Mainz
- SAMPLE/Bates

Q_{Weak} experiment

Figure: Young, Carlini, Thomas, Roche

Parity-Violating Electron Scattering: Quark Couplings

Weak vector charge *uud* $Q_W^p = -2(2C_{1u} + C_{1d})$

Early experiments

SLAC and APV

Electron scattering

- HAPPEx, G0
- PVA4/Mainz
- SAMPLE/Bates

Q_{Weak} experiment

Figure: Young, Carlini, Thomas, Roche
Parity-Violating Electron Scattering: Quark Couplings

Weak vector charge *uud* $Q_W^p = -2(2C_{1u} + C_{1d})$

Early experiments

SLAC and APV

Electron scattering

- HAPPEx, G0
- PVA4/Mainz
- SAMPLE/Bates

Q_{Weak} experiment

Figure: Young, Carlini, Thomas, Roche

Section 10

Precision Polarimetry with Atomic Hydrogen

Precision Electroweak Experiments: JLab 12 GeV

MOLLER Experiment		SoLID PV-DIS Experiment	
Source	ΔA_{PV}	Source	ΔA_{PV}
Mom. transfer Q^2	0.5%	Beam polarization	0.4%
Beam polarization	0.4%	Rad. corrections	0.3%
2 nd order beam	0.4%	Mom. transfer Q^2	0.5%
Inelastic <i>ep</i>	0.4%	Inelastic <i>ep</i>	0.2%
Elastic <i>ep</i>	0.3%	Statistics	0.3%

Precision beam polarimetry is crucial to these experiments.

Precision Electroweak Experiments: Polarimetry

Compton Polarimetry

- $\vec{e}\vec{\gamma}
 ightarrow e\gamma$ (polarized laser)
- Detection e and/or γ
- Only when beam energy above few hundred MeV
- High photon polarization but low asymmetry
- Total systematics $\sim 1\%$
 - laser polarization
 - detector linearity

Møller Polarimetry

- $\vec{e}\vec{e}
 ightarrow ee$ (magnetized Fe)
- Low current because temperature induces demagnetization
- High asymmetry but low target polarization
- Levchuk effect: scattering off internal shell electrons
- Intermittent measurements at different beam conditions
- Total systematics $\sim 1\%$

Atomic Hydrogen Polarimetry

Møller polarimetry

- 300 mK cold atomic H
- 8 T solenoid trap
- $3 \cdot 10^{16} \text{ atoms/cm}^2$
- $3 \cdot 10^{15-17}$ atoms/cm³
- 100% polarization of *e* in the atomic hydrogen

Advantages

- High beam currents
- No Levchuk effect
- Non-invasive, continuous

Reference: E. Chudakov, V. Luppov, IEEE Trans. on Nucl. Sc. 51, 1533 (2004).

Atomic Hydrogen Polarimetry: 100% e Polarization

Hyperfine Splitting in Magnetic Field

• Force $\vec{\nabla}(-\vec{\mu}\cdot\vec{B})$ will pull $|a\rangle$ and $|b\rangle$ into field

- Energy splitting of $\Delta E = 2\mu B$: $\uparrow / \downarrow = \exp(-\Delta E/kT) \approx 10^{-14}$
- Low energy states with |s_es_p>:

•
$$|d
angle = |\uparrow \Uparrow
angle$$

•
$$|c\rangle = \cos\theta |\uparrow\Downarrow\rangle + \sin\theta |\downarrow\uparrow\rangle$$

•
$$|b
angle = |{\downarrow}{\Downarrow}
angle$$

•
$$|a\rangle = \cos \theta |{\downarrow} \uparrow \rangle - \sin \theta |{\uparrow} \Downarrow \rangle$$

• with
$$\sin \theta \approx 0.00035$$

• $P_e(\downarrow) \approx 1$ with only 10^5 dilution from $|\uparrow\downarrow\rangle$ in $|a\rangle$ at B = 8 T

• $P_p(\Uparrow) \approx$ 0.06 because 53% |a
angleand 47% |b
angle

Atomic Hydrogen Polarimetry: Expected Contaminations

Without beam

- Recombined molecular hydrogen suppressed by coating of cell with superfluid He, $\sim 10^{-5}$
- Residual gasses, can be measured with beam to < 0.1%

With 100 μ A beam

- 497 MHz RF depolarization for 200 GHz $|a\rangle \rightarrow |c\rangle$ transition, tuning of field to avoid resonances, uncertainty $\sim 2\cdot 10^{-4}$
- lon-electron contamination: builds up at 20%/s in beam region, cleaning with \vec{E} field of $\sim 1 \text{ V/cm}$, uncertainty $\sim 10^{-5}$

Atomic Hydrogen Polarimetry: Projected Uncertainties

Projected Systematic Uncertainties ΔP_e in Møller polarimetry

Source	Fe-foil	Hydrogen
Target polarization	0.63%	0.01%
Analyzing power	0.30%	0.10%
Levchuk effect	0.50%	0.00%
Deadtime	0.30%	0.10%
Background	0.30%	0.10%
Other	0.30%	0.00%
Unknown unknowns	0.00%	0.30%(?)
Total	1.0%	0.35%

Atomic Hydrogen Polarimetry: Collaboration with Mainz

P2 Experiment in Mainz: Weak Charge of the Proton

- "Q_{Weak} experiment" with improved statistical precision
- Dedicated 200 MeV accelerator MESA under construction
- Required precision of electron beam polarimetry < 0.5%
- Strong motivation for collaboration on a short timescale (installation in 2017)

Ancillary Measurements: Background Processes

Aluminum asymmetry (preliminary)

• Asymmetry consistent with order of magnitude expected

- Asymmetry: few ppm
- Dilution f of 3%
- Correction $\approx 20\%$

Dilution measurement (preliminary)

Radiative Corrections

Modified expression, $Q_W^p = 1 - 4 \sin^2 \theta_W$ only at tree level

•
$$Q_W^p = (\rho_{NC} + \Delta_e)(1 - 4\sin^2\theta_W(0) + \Delta'_e) + B_{WW} + B_{ZZ} + B_{\gamma Z}$$

- $\Delta \sin^2 \theta_W(M_Z)$, WW, ZZ box diagrams: uncertainty small
- γZ box: 8% correction with pprox 1% uncertainty

Source	Qp _{Weak} Uncertainty
⊿ sin θ _w (M _z)	±0.0006
Zγbox	±0.0005
$\Delta \sin \theta_W (Q)_{hadronic}$	±0.0003
WW, ZZ box - pQ	CD ±0.0001
Charge symmetry	0
Total	±0.0008

Corrections to $Q_W^p pprox 0.07$

Erler et al., PRD 68(2003)016006.

• Verification in "DIS" region, calculation by Melnitchouk

Radiative Corrections

Modified expression, $Q_W^p = 1 - 4 \sin^2 \theta_W$ only at tree level

•
$$Q_W^p = (\rho_{NC} + \Delta_e)(1 - 4\sin^2\theta_W(0) + \Delta'_e) + B_{WW} + B_{ZZ} + B_{\gamma Z}$$

- $\Delta \sin^2 \theta_W(M_Z)$, WW, ZZ box diagrams: uncertainty small
- γZ box: 8% correction with pprox 1% uncertainty

Verification in "DIS" region, calculation by Melnitchouk

Radiative Corrections

Modified expression, $Q_W^p = 1 - 4 \sin^2 \theta_W$ only at tree level

•
$$Q_W^p = (\rho_{NC} + \Delta_e)(1 - 4\sin^2\theta_W(0) + \Delta'_e) + B_{WW} + B_{ZZ} + B_{\gamma Z}$$

- $\Delta \sin^2 \theta_W(M_Z)$, WW, ZZ box diagrams: uncertainty small
- γZ box: 8% correction with pprox 1% uncertainty

Verification in "DIS" region, calculation by Melnitchouk

Section 11

The Q_{Weak} Experiment

The Q_{Weak} Experiment: Main Detector

Event mode characterization

- Larger signal in + or end depending on proximity
- Number of photo-electrons ≈ 85 per track

Integrating data chain noise

The Q_{Weak} Experiment: Main Detector

Event mode characterization

- Larger signal in + or end depending on proximity
- Number of photo-electrons ≈ 85 per track

Integrating data chain noise

 Not limited by electronic noise

Projected uncertainties on A_{meas} and Q_W^p

Source of	Contribution to	Contribution to
uncertainty	$\Delta A_{meas}/A_{meas}$	$\Delta Q_W^p/Q_W^p$
Statistics	2.1%	3.2%
Hadronic structure	-	1.5%
Beam polarimetry	1.0%	1.5%
Measurement Q^2	0.5%	1.0%
Backgrounds	0.5%	0.7%
Helicity-correlated		
beam properties	0.5%	0.7%
Total	2.5%	4.1%

Parity-Violating Electron Scattering Reduced parity-violating asymmetry

$$\overline{A_{PV}}(p) = A_{PV}(p) \cdot \frac{4\pi\alpha\sqrt{2}}{-G_F Q^2} \xrightarrow{Q^2 \to 0} Q_W^p + Q^2 \cdot B(Q^2)$$

Figure: Young, Carlini, Thomas, Roche (2007)

Parity-Violating Electron Scattering: $\sin^2 \theta_W$

Running of $\sin^2 \theta_W$ $(Q_W^p = 1 - 4 \sin^2 \theta_W)$

- Higher order loop diagrams
- $\sin^2 \theta_W$ varies with Q^2

Section 12

Radiative Corrections

yZ Box Corrections near 1.16 GeV

In 2009, Gorchtein and Horowitz showed the vector hadronic contribution to be significant and energy dependent.

This soon led to more refined calculations with corrections of ~8% and error bars ranging from $\pm 1.1\%$ to $\pm 2.8\%.$

interpretation of Cs APV.

It will probably also spark a refit of the global PVES database used to constrain $G_{\rm E}{}^{\rm s}, G_{\rm M}{}^{\rm s}, G_{\rm A}$.

PV Amplitude	Authors	Correction* © E=1.165 (GeV)	BMT and references (V and A are hadronic couplings)
A°×V° (vanishes as E→0)	GH	0.0026+-0.0026**	Qweak correction
	SBMT	0.0047 +0.0011 -0.0004	× 08
	RC	0.0057±0.0009	Old C 0.0 axial G
	GHR-M	0.0054±0.0020	et 0.6 E=0 MS
V ^e ×A ^p (finite as E→0)	MS (as updated by EKR-M)	0.0052±0.0005***	only 2 0.4 New axial vs E
	BMT	0.0037 <u>±</u> 0.0004	E(GeV)
*Does not include a	small contribut	ion from the elastic.	Forthcoming axial results for Q _{wⁿ} have the potential to impact the

***Included in QwP. For reference, QwP =0.0713(8).

yZ Box Corrections near 1.16 GeV A Partial Bibliography

PV Amplitude	Authors	Reference
A ^e xV ^p (vanishes as E→0)	GH	Gorchtein & Horowitz, PRL 102 , 091806 (2009)
	SBMT	Sibirtsev, Blunden, Melnitchouk, andThomas, PRD 82 , 013011 (2010)
	RC	Rislow & Carlson, PRD 83 , 113007 (2011)
	GHR-M	Gorchtein, Horowitz, and Ramsey-Musolf, PRC 84 , 015502 (2011)
V ^e ×A ^p (finite as E→0)	MS	Marciano and Sirlin, PRD 27 , 552 (1983), PRD 29 , 75 (1984)
	EKR-M	Erler, Kurylov, and Ramsey-Musolf, PRD 68 , 016006 (2003)
	BMT	Blunden, Melnitchouk, and Thomas, PRL 107 , 081801 (2011)

The Q_{Weak} Experiment: Toroidal Magnet (QTOR)

QTOR installed in Hall C

- Full assembly and power supply tests
- Mapped at half field, within tolerances

QTOR properties

- Warm coils
- 10000 A
- 6 m high

Large coils aligned to 1 mm

At MIT/Bates

The Q_{Weak} Experiment: Main Detector

Low noise electronics

- Event rate: 800 MHz/PMT
- Asymmetry of only 0.2 ppm
- Low noise electronics (custom design, TRIUMF)

I-V Preamplifier

Delivered, tested: noise is 3 times lower than counting statistics

Reminder: weak vector charges

- Proton weak charge $Q_W^p \approx -0.072$
- Neutron weak charge $Q_W^n = -1$

Sources of neutron scattering

- Al target windows
- Secondary collimator events
- Small number of events, but huge false PV asymmetry

Al target windows

Largest projected uncertainties on Q_W^p

- Total uncertainty on Q_W^p : 4.1%
- Statistical uncertainty: 3.2%
- Hadronic structure: 1.5%
- Beam polarimetry: 1.5%
- Measurement of Q^2 : 1.0%
- Background events: 0.7%
- Helicity-correlated beam properties: 0.7%

- Track reconstruction/momentum determination software
- Construction of Compton polarimeter

Largest projected uncertainties on Q_W^p

- Total uncertainty on Q_W^p : 4.1%
- Statistical uncertainty: 3.2%
- Hadronic structure: 1.5%
- Beam polarimetry: 1.5%
- Measurement of Q^2 : 1.0%
- Background events: 0.7%
- Helicity-correlated beam properties: 0.7%

- Track reconstruction/momentum determination software
- Construction of Compton polarimeter

Largest projected uncertainties on Q_W^p

- Total uncertainty on Q_W^p : 4.1%
- Statistical uncertainty: 3.2%
- Hadronic structure: 1.5%
- Beam polarimetry: 1.5%
- Measurement of Q^2 : 1.0%
- Background events: 0.7%
- Helicity-correlated beam properties: 0.7%

- Track reconstruction/momentum determination software
- Construction of Compton polarimeter

Largest projected uncertainties on Q_W^p

- Total uncertainty on Q_W^p : 4.1%
- Statistical uncertainty: 3.2%
- Hadronic structure: 1.5%
- Beam polarimetry: 1.5%
- Measurement of Q^2 : 1.0%
- Background events: 0.7%
- Helicity-correlated beam properties: 0.7%

- Track reconstruction/momentum determination software
- Construction of Compton polarimeter

The *Q_{Weak}* Experiment: Tracking Mode Gas-electron multiplier (GEM)

- Very close to target, very high dose
- GEMs have high radiation hardness
- · Several days of radcon cool-down in GEM bunker
- Remotely controlled rotator mounted on collimator

The Q_{Weak} Experiment: Tracking Mode

Horizontal drift chambers (HDC)

• 12 planes per octant

• *u*, *v*, *x*, *u*, *v*, *x* planes per assembly

- 4 + 1 constructed, tested
- Residuals from cosmic events
- Ready for installation

HDC rotator system

The Q_{Weak} Experiment: Tracking Mode

Vertical drift chambers (VDC)

- 181 wires in 2 m wide planes
- *u*, *v*, *u*, *v* planes per assembly
- Multiplexed read-out on delay lines

Principle of operation

VDC rotator system

Electroweak Interaction: Running of $\sin^2 \theta_W$

Atomic parity-violation on ¹³³Cs

- New calculation in many-body atomic theory
- Porsev, Beloy, Derevianko; arXiv:0902.0335 [hep-ph]
- Experiment: $Q_W(^{133}Cs) = -73.25 \pm 0.29 \pm 0.20$
- Standard Model: $Q_W(^{133}Cs) = -73.16 \pm 0.03$

NuTeV anomaly explained

- Originally, 3σ deviation from Standard Model
- Erler, Langacker: strange quark PDFs
- Londergan, Thomas: charge symmetry violation, $m_u \neq m_d$
- Cloet, Bentz, Thomas: in-medium modifications to PDFs, isovector EMC-type effect
- Entire anomaly accounted for (everybody stops looking...)

Electroweak Interaction

Running of $\sin^2 \theta_W$

- Higher order loop diagrams
- $\sin^2 \theta_W$ varies with Q^2

Electroweak Interaction

Running of $\sin^2 \theta_W$

- Higher order loop diagrams
- $\sin^2 \theta_W$ varies with Q^2

Sensitivity to New Physics New physics

- Consider effective contact interaction
- Coupling constant g, mass scale Λ
- Effective charges h_V^u and h_V^d

Effective Lagrangian

Other Experiments

