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There are Two Main Classes of Standard Model Tests

Current status of the Standard Model
Standard Model is an effective low-energy theory of the
more fundamental underlying physics.

Complementary approaches to uncover the underlying physics

• Energy frontier: direct searches for new particles
• Precision or intensity frontier: indirect searches

Energy frontier

• Highest energies
• Few signature events
• E.g.: Tevatron, LHC

Precision or intensity frontier

• Modest or low energies
• High statistical power
• g − 2, EDM, ββ, rare decays
• Fundamental symmetries
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Section 1

Precision Electroweak Tests of the Standard
Model
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Electroweak Interaction: An Introduction

Glashow–Weinberg–Salam theory of weak interaction

• Gauge symmetry: SU(2)L × U(1)Y

• Gauge couplings: g for SU(2)L, g ′ for U(1)Y

• Left-handed leptons in doublets, right-handed in singlets
• Fundamental symmetry of left and right is broken

Parity symmetry is violated

• Weak interaction violates parity

• Electromagnetism satisfies parity

• Use parity-violation to measure internal
electroweak parameters
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Electroweak Interaction: An Introduction

Glashow–Weinberg–Salam theory of weak interaction

• Gauge symmetry: SU(2)L × U(1)Y

• Gauge couplings: g for SU(2)L, g ′ for U(1)Y

• Left-handed leptons in doublets, right-handed in singlets
• Fundamental symmetry of left and right is broken

Electroweak symmetry breaking (Bµ,W i
µ → Aµ,Z 0

µ ,W ±
µ )

• Aµ,Z 0
µ,W ±

µ are mixture of Bµ and W i
µ

• Gauge field Aµ remains massless (photon)

• Gauge fields Z 0
µ,W ±

µ obtain mass (weak bosons)

• Weinberg angle θW describes how they mix

5



Electroweak Interaction: An Introduction

Glashow–Weinberg–Salam theory of weak interaction

• Gauge symmetry: SU(2)L × U(1)Y

• Gauge couplings: g for SU(2)L, g ′ for U(1)Y

• Left-handed leptons in doublets, right-handed in singlets
• Fundamental symmetry of left and right is broken

Electroweak symmetry breaking (Bµ,W i
µ → Aµ,Z 0

µ ,W ±
µ )

sin2 θW =
g ′2

g2 + g ′2 = 0.23122 ± 0.00015 (at MZ ) ≈
1
4

Aµ = cos θW · Bµ + sin θW · W 3
µ (massless)

Z 0
µ = − sin θW · Bµ + cos θW · W 3

µ (MZ ≈ 91.2 GeV)

W ±
µ = (W 1

µ ∓ iW 2
µ)/

√
2 (MW ≈ 80.4 GeV)
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Electroweak Interaction: An Introduction

Glashow–Weinberg–Salam theory of weak interaction

• Gauge symmetry: SU(2)L × U(1)Y

• Gauge couplings: g for SU(2)L, g ′ for U(1)Y

• Left-handed leptons in doublets, right-handed in singlets
• Fundamental symmetry of left and right is broken

Parity-violation neutral current (gV − γ5gA)

LNC
PV = −GF√

2

[
ge

A (ēγµγ5e) ·
∑

q gq
V (q̄γµq)

+ ge
V (ēγµe) ·

∑
q gq

A (q̄γµγ5q)
]

= − GF

2
√

2

[∑
q C1q (ēγµγ5e) · (q̄γµq)

+
∑

q C2q (ēγµe) · (q̄γµγ5q)
]

e e′

Z , Z ′

q q′
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Electroweak Vector Charge of the Proton is Suppressed

Parity-violating electron scattering couplings

• Weak vector quark coupling: C1q = 2ge
A gq

V (γ5 on e vertex)
• Weak axial quark coupling: C2q = 2ge

V gq
A (γ5 on q vertex)

Particle Electric charge Weak vector charge (sin2 θW ≈ 1
4)

u +2
3 −2C1u = +1 − 8

3 sin
2 θW ≈ +1

3
d −1

3 −2C1d = −1 + 4
3 sin

2 θW ≈ −2
3

p(uud) +1 Qp
W = 1 − 4 sin2 θW ≈ 0

n(udd) 0 Qn
W = −1

Proton’s weak vector charge Qp
W is approximately zero

Accidental suppression of the proton’s weak charge in
Standard Model makes it more sensitive to new physics!

Access to these weak vector charges by using parity-violation
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We Use Spin to Access Weak Charges in Parity-Violation

Parity transformation: Inversion of spatial vectors ~v → −~v

• No change in the sign for angular momentum vectors (~S)

Tests using parity-violating electron scattering

• Polarized electrons (spin ~S) on unpolarized target
• Instead of inverting ~r → −~r , ~p → −~p, but keeping ~S = ~S,

we leave ~r and ~p unchanged but flip polarization or spin ~S

Asymmetry APV between left and right scattering off nucleons

N

e e′

S

P
N

e
e′

S
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Difference in Cross Section is Encoded in Asymmetry.

Parity-violating asymmetry in electron scattering

• Difference between left- and right-handed scattering yield

APV =
σR − σL
σR + σL

N

e e′

S

P

N

e e′

S

• Electromagnetic component is identical, hence subtracted out
• Parity-violating electroweak and new physics remains in APV
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Parity-Violating Asymmetry Reduces to the Weak Charge

Asymmetry between left and right helicity

APV =
σL − σR
σL + σR

with σ =

∣∣∣∣∣∣∣∣∣
e e′

γ

q q′

+

e e′

Z , . . .

q q′

∣∣∣∣∣∣∣∣∣
2

Interference of photon and weak boson exchange

MEM ∝ 1
Q2 MNC

PV ∝ 1
M2

Z + Q2

APV =
σR − σL
σR + σL

∝
MNC

PV
MEM ∝ Q2

M2
Z

when Q2 � M2
Z
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Parity-Violating Asymmetry Reduces to the Weak Charge

Asymmetry between left and right helicity

APV =
σL − σR
σL + σR

with σ =

∣∣∣∣∣∣∣∣∣
e e′

γ

q q′

+

e e′

Z , . . .

q q′

∣∣∣∣∣∣∣∣∣
2

Interference of photon and weak boson exchange for protons

APV (p) = −GF Q2

4πα
√

2

[
εGE GZ

E + τGMGZ
M − (1 − 4 sin2 θW )ε′GMGZ

A
ε(GE )2 + τ(GM)2

]
In the forward elastic limit Q2 → 0, θ → 0 (plane wave)

APV (p) Q2→0−−−−→ −GF Q2

4πα
√

2
[
Qp

W + Q2 · B(Q2)
]
≈ −230 ppb ∝ Qp

W
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Parity-Violating Asymmetry Reduces to the Weak Charge

Asymmetry between left and right helicity

APV =
σL − σR
σL + σR

with σ =

∣∣∣∣∣∣∣∣∣
e e′

γ

q q′

+

e e′

Z , . . .

q q′

∣∣∣∣∣∣∣∣∣
2

Interference of photon and weak boson exchange for electrons

APV (e) = mE GF

πα
√

2

[
4 sin2 θ

(3 + cos2 θ)2

]
Qe

W

Direct connection from asymmetry to weak charge of electron
APV (e) ≈ 35 ppb ∝ Qe

W

No hadronic uncertainty due to B(Q2) form factor term
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Strategy to Measure Parts-Per-Billion: All The Events!

Event versus integration mode
• Event mode (the good ol’ nuclear/particle way)

• each event individually registered
• event selection or rejection possible

time0 100 ns

µA

• Integrating mode (current mode)
• high event rates possible (event every nanosecond!)
• no suppression of background events possible

time0 100 ns

µA
. . .
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We Measure Time-Dependent Integrated Detector Signal

Current mode with 1 kHz helicity reversals

time [ms]0 1 2 3 4 5 6

cu
rre

nt

≈ 6µA + − + − + − polarization
asymmetry only 230 ppb

• Collect many polarization windows: 2 year long experiment
• Counting mode at 1 MHz would have taken 7000 years. . .
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We Measure Time-Dependent Integrated Detector Signal

Current mode with 1 kHz helicity reversals

time [ms]

(zero several hundred km down)

0 1 2 3 4 5 6

cu
rre

nt

≈ 6µA + − + − + − polarization
asymmetry only 230 ppb

(counting noise ≈ 1000 times larger)

• Collect many polarization windows: 2 year long experiment
• Counting mode at 1 MHz would have taken 7000 years. . .
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Section 2

Parity-Violating Electroweak Experiments at
Jefferson Lab
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Parity-Violating Electroweak Experiments at Jefferson Lab

QWeak Experiment

• Measurement of Qp
W in ~ep → e′p on protons in hydrogen

• Completed, preliminary results, full results in Fall 2017
• Ongoing analysis effort, constitutes the bulk of this talk

MOLLER Experiment

• Measurement of Qe
W in ~ee → e′e on electrons in hydrogen

• Planned for running at Jefferson Lab 12 GeV

PV-DIS and SoLID Experiments

• Measurement of C1,2q in ~ep → e′p on hydrogen, deuterium
• Completed at 6 GeV, planned at Jefferson Lab 12 GeV
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Where is Jefferson Lab?

Newport News, Virginia
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What is Jefferson Lab?

Jefferson Lab Overview
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Section 3

The QWeak Experiment
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The QWeak Experiment: Overview

• Precision measurement of a quantity suppressed by
fundamental symmetries (Qp

W ≈ 0, asymmetry of 230 ppb)
• Elastic scattering of electron beam on proton target to

measure the proton weak charge Qp
W to a precision of 4%

Pushing the envelope of intensity (more events)

• Higher beam current (150µA versus usually < 100µA)
• Longer cryo-target (35 cm versus 20 cm)
• Higher event rates up to 800 MHz (integration)

Pushing the envelope of precision (better measurements)

• Electron beam polarization precision of 1% at 1 GeV
• Helicity-correlated asymmetries at ppb level
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The QWeak Experiment: Overview

Collimator-Magnet-Collimator focusing spectrometer

Triple Pb Collimator

          System

LH  Target

    Drift

Chambers

8 Quartz Bar Detectors

   Trigger

Scintillators
     8 Segment

Toroidal Magnet

High Density Shield Wall

2

“The Qweak Experimental Apparatus,” NIM A 781, 105 (2015);
http://dx.doi.org/10.1016/j.nima.2015.01.023
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The QWeak Experiment: High Power Cryotarget
Operational Parameters

• Transverse flow: 2.8 m/s
• Target length: 35 cm
• Beam current: 150µA
• Heating power: 2.5 kW

Design with CFD

Power for other cryotargets
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The QWeak Experiment: High Power Cryotarget

Low-frequency ‘boiling’ noise

• Helicity flip rate 960 Hz →
240 Hz (quartet cycles)

• Target density fluctuations
at low frequencies occur

• Power spectrum of signal

Current dependence

• Additional noise smaller
than statistical width

• Consistent for different
current and beam rasters

• Current to 180µA
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The QWeak Experiment: Main Detector
Preradiated Čerenkov detector bars

• 8 fused silica radiators, 2 m long × 18 cm × 1.25 cm
• Pb preradiator tiles to reduce low-energy tracks (neutrals)
• Light collection: total internal reflection
• 5 inch PMTs with gain of 2000, low dark current
• 800 MHz electron rate per bar, defines counting noise
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The QWeak Experiment: Kinematics in Event Mode
Reasons for a tracking system?

• Determine Q2, note: Ameas ∝ Q2 ·
(
Qp

W + Q2 · B(Q2)
)

• Main detector light output and Q2 position dependence
• Contributions from inelastic background events

Instrumentation of only two octants

• Horizontal drift chambers for front region (Va Tech)
• Vertical drift chambers for back region (W&M)
• Rotation allows measurements in all eight octants

Track reconstruction
• Straight tracks reconstructed in front and back regions
• Front and back partial tracks bridged through mag field
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The QWeak Experiment: Improved Beam Polarimetry

Requirements on beam polarimetry

• Largest experimental uncertainty in QWeak experiment
• Systematic uncertainty of 1% (on absolute measurements)

Upgrade existing Møller polarimeter (~e + ~e → e + e)

• Scattering off atomic electrons in magnetized iron foil
• Limited to separate, low current runs (I ≈ 1µA)

Construction new Compton polarimeter (~e + ~γ → e + γ)

• Compton scattering of electrons on polarized laser beam
• Continuous, non-destructive, high precision measurements
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The QWeak Experiment: Improved Beam Polarimetry

Compton polarimeter

• Beam: 150µA at 1.165 GeV
• Chicane: interaction region 57 cm below straight beam line
• Laser system: 532 nm green laser

• 10 W CW laser with low-gain cavity
• Photons: PbWO4 scintillator in integrating mode
• Electrons: Diamond strips with 200µm pitch
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The QWeak Experiment: Beam Polarimetry

Møller polarimetry

• New beamline, refurbished
• Invasive measurements
• Polarization larger than

anticipated: 86% to 88%

Compton polarimetry

• Excellent performance
• Continuous measurements
• Operates at full 180µA
• Great statistical precision
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Data Quality: Slow Helicity Reversal
λ/2-plate and Wien filter changes

• Insertable λ/2-plate (IHWP) in injector allows ‘analog’
flipping helicity frequently

• Wien filter: another way of flipping helicity (several weeks)
• Each ‘slug’ of 8 hours consists of same helicity conditions

• Preliminary asymmetries: 60 ppb blinded, not corrected, not
regressed! And only 8 of hundreds of slugs. . .

• Average asymmetries are consistent with sign change
26



Weak Charge in Preliminary Agreement with Prediction

First results based on subset of the data in 2013
• Publication in Phys. Rev. Lett. 111, 141803 (2013)
• Based on only 4% of the total data set: first experiment with

direct access to proton’s weak charge
• 25 times more data available: projected release in Fall 2017

Global analysis method by Young, Roche, Carlini, Thomas

• Fit of parity-violating asymmetry data on H, D, 4He, up to
Q2 = 0.63 GeV2, and rotated to zero forward angle

• Free parameters were C1u, C1d , strange charge radius ρs and
magnetic moment µs , and isoscalar axial form factor (zero at
tree level)

• Qp
W (PVES) = 0.064 ± 0.012 (our result with world data)

• Qp
W (SM) = 0.0710 ± 0.0007 (theoretical expectation)
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First Determination of the Weak Charge of the Proton

Intercept of reduced asymmetry at Q2 = 0
APV = APV

A0
= Qp

W + Q2 · B(Q2, θ = 0) with A0 = − GF Q2

4πα
√

2
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Determination of the Weak Charge of the Proton

Extraction from just parity-violating electron scattering,
including the new QWeak results

Qp
W (PVES) = 0.064 ± 0.012

In agreement with prediction in the Standard Model

Qp
W (SM) = 0.0710 ± 0.0007
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Determination of the Weak Vector Charges of the Quarks
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Determination of the Electroweak Mixing Angle
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Determination of the Weak Vector Charges of the Quarks

Global fit of all atomic and electron scattering data
• Determination of weak charge of the proton

• Qp
W (PVES+APV) = 0.063 ± 0.012

• Qp
W (SM) = 0.0710 ± 0.0007

• Extraction of weak vector quark couplings possible
• C1u = −0.1835 ± 0.0054
• C1d = 0.3355 ± 0.0050

• Determination of weak charge of the neutron
• Qn

W (PVES+APV) = −0.975 ± 0.010
• Qn

W (SM) = −0.9890 ± 0.0007
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Largest Uncertainties in Preliminary QWeak Result?

All uncertainties in ppb ∆Acorr δ(APV )

Beam polarization P -21 5
Kinematics Rtotal 5 9
Dilution 1/(1 −

∑
fi) -7

Beam asymmetry -40 13
Transverse pol. AT 0 5
Detector non-linearity 0 4
Backgrounds: δ(fi) δ(Ai)
Aluminum (b1) -58 4 8
Beamline (b2) 11 3 23
Neutrals (b3) 0 1 1
Inelastic (b4) 1 1 1

APV = Rtotal

Amsr
P −

∑
fiAi

1 −
∑

fi
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Helicity-Correlated Beam Properties Are Understood
Measured asymmetry depends on beam position, angle, energy

• Well-known and expected effect for PVES experiments
• “Driven” beam to check sensitivities from “natural” jitter
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Helicity-Correlated Beam Properties Are Understood
Sensitivities are used to correct measured asymmetry

• Acorr =
∑

i
∂A
∂xi

∆xi with beam parameters i = x , y , x ′, y ′,E
• Sensitivities (derivatives) from simultaneous regression fits

Excellent agreement between natural and driven beam motion

• Figure includes about
50% of total dataset for
QWeak experiment

• No other corrections
applied to this data
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However, Some Beamline Background Correlations Remain
After regression, correlation with background detectors

• Luminosity monitors & spare detector in super-elastic region
• Background asymmetries of up to 20 ppm (that’s huge!)
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However, Some Beamline Background Correlations Remain
Hard work by grad students: now understood, under control

• Partially cancels with slow helicity reversal (half-wave plate)
• Likely caused by large asymmetry in small beam halo or tails
• Scattering off the beamline and/or “tungsten plug”

Qualitatively new background for PVES experiments at JLab

• Second regression using asymmetry in background detectors
• Measurements with blocked octants to determine dilution

factor (f MD
b2

= 0.19%)
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Beamline Background Corrections Are Under Control
Beamline background correction improve statistical consistency
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Sensitivity to New Physics

New parity-violating physics

• Consider effective contact interaction
• Coupling constant g , mass scale Λ

• Effective charges hu
V = cos θh and hd

V = sin θh

Effective Lagrangian (Erler et al., PRD 68, 016006 (2003))

LPV
e−q = LPV

SM + LPV
New

= −GF√
2

eγµγ5e
∑

q
C1qqγµq +

g2

4Λ2 eγµγ5e
∑

q
hV

q qγµq
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Sensitivity to New Physics

Determination of weak charge of the proton

• Assume agreement with Standard Model within ∆Qp
W

• What are the limits on Λ
g ?

Limits on new physics energy scale

Λ

g =
1
2

(√
2GF∆Qp

W

)−1/2

• Limits from ∆Qp
W = 0.005: Λ

g > 1.7 TeV at 1σ
• For comparison with LHC results: g2 = 4π
• Lower limit Λ > 5.4 TeV at 95% C.L.
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Progress on QWeak Data Analysis

A lot of progress has been made already

• Completed data-taking in May 2012
• Published first determination of proton’s weak charge and

global analysis in PRL in October 2013
• Qp

W (PVES + APV ) = 0.063 ± 0.012 with only 4% of the data

Unprecedented precision come with inevitable surprises

• Blind analysis precludes “incremental” preliminary results
• Discovered qualitatively new “beamline background” noise
• Discovered another qualitatively new systematic (non-noise)

background
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Progress on QWeak Data Analysis

A lot of progress has been made already
• Discovered another qualitatively new systematic (non-noise)

background
• Various microscopic explanations consistent with effect
• Geant4 simulations & detector post-mortems on-going
• Confident that we can understand this effect better
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The QWeak Experiment: Timeline

• Double-scattering effect studies were our last hangup
• Unblinding: March 31, 2017
• Publication and release during the summer/fall (DNP

meeting)
• Stay tuned!
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The QWeak Experiment: Projections
Reduced parity-violating asymmetry

• This was all with only 4% of total data!
• Projected result with full data set (25 times more data)
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The QWeak Experiment: Ancillary Measurements

Upcoming ancillary results

• Aluminum parity-violating asymmetry
• Elastic transverse asymmetry (two-photon exchange effects)
• Nuclear-elastic transverse asymmetry (Coulomb interaction)
• N → ∆ asymmetry at two beam energies
• Transverse asymmetry in ∆ production
• Non-resonant inelastic parity-violating asymmetry (γZ box

diagram)
• Non-resonant inelastic transverse asymmetry
• Pion photoproduction parity-violating asymmetries
• Pion photoproduction transverse asymmetries
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Section 4

The MOLLER Experiment
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The MOLLER Experiment

Measurement of the electroweak mixing angle at low energy

• Elastic scattering of electrons on electrons in hydrogen
• Precision measurement of the weak charge of the electron

Qe
W ≈ 0 at 11 GeV
• Asymmetry APV ≈ 35.6 ppb, with precision δAPV = ±0.7 ppb
• Precision δQe

W ≈ ±2.1%, δ sin2 θW = ±0.1%

Pushing the envelope of intensity (more events)

• Even higher luminosity: 85µA on 1.5 m long cryo-target
• Event rates up to 150 GHz (integrated, of course)

Pushing the envelope of precision

• Electron beam polarization precision of 0.4% at 11 GeV
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The MOLLER Experiment

Experimental Layout

• Long, narrow hybrid toroidal spectrometer system to select
very forward events

• Focusing of ee and ep on segmented quartz detector rings
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Section 5

PV-DIS and SoLID Experiments
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PV-DIS and SoLID Experiments

Analogy with Deep Inelastic Scattering

d2σ

dΩdE ′ =
α2

4E 2 sin4 θ
2

(
2
M F1(x) sin2 θ

2 +
1
ν

F2(x) cos2 θ

2

)

Quark structure through DIS

• F2(x) = x
∑

q e2
q(q + q̄) ≈ 2xF1(x) (Callan-Gross)

Quark structure through PV-DIS: interference of γZ

• F γZ
2 (x) = x

∑
q eqgV

q (q + q̄) → a1(x) ∼
∑

q eqC1q (q + q̄)

• F γZ
3 (x) = x

∑
q eqgA

q (q − q̄) → a3(x) ∼
∑

q eqC2q (q − q̄)

50



PV-DIS and SoLID Experiments

Recent Results from PV-DIS at 6 GeV

• Published in Nature 506,
p67 (February 2014)

• First evidence at 95% C.L.
that the weak axial quark
couplings C2q are non-zero
(as predicted by the
Standard Model)

• Exclusion limits for contact
interactions Λ− > 4.8 TeV
and Λ+ > 5.8 TeV
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PV-DIS and SoLID Experiments

Solenoidal Large Intensity Device

• 2 GeV < p < 8 GeV
• 2 GeV2 < Q2 < 10 GeV2

• 0.2 < x < 1
• 40% azimuthal acceptance
• L ≈ 5 · 1035 s−1cm−2

Experimental design

• Counting mode at rate > 200 kHz, 30 independent sectors
• Baffles filter low energy and neutral particles (no line of sight)
• Light gas Čerenkov for 1000–200 : 1 rejection of low-E π−

• Electromagnetic calorimeter for 50 : 1 π− rejection
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PV-DIS and SoLID Experiments: Weak Axial Couplings

Projected Precision on C1q and C2q Couplings
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Summary
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Summary
The QWeak experiment

• Elastic ~e-p scattering on liquid hydrogen target
• Precision measurement of a proton weak charge Qp

W ≈ 0,
quantity suppressed by fundamental symmetries

• First determination of the weak charge of the proton
• With only 4% of the full data set
• Qp

W (PVES + APV ) = 0.063 ± 0.012
• Weak charge is in agreement with Standard Model

• Results from full data set anticipated in fall 2014

Broad program of electroweak precision measurements

• PV-DIS: weak axial quark couplings are non-zero at 95% C.L.
• MOLLER, SoLID: precision measurements of mixing angle and

weak quark couplings
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Section 7

Parity-Violating and Parity-Conserving Nuclear
Asymmetries
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Ancillary Measurements: Aluminum Target Walls

Aluminum asymmetry
(preliminary)

• Asymmetry consistent with
order of magnitude expected

• Asymmetry: few ppm
• Dilution f of 3%
• Correction ≈ 20%

Dilution measurement
(preliminary)
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Ancillary Measurements: Inelastic Transitions

N → ∆ asymmetry (projected)

• In analysis, no result yet
• Expected precision 1 ppm
• Q2 = 0.025 GeV2

• Asymmetry: few ppm
• Dilution f of 0.1%
• Correction ≈ 1%

Simulation benchmark
(preliminary)
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Ancillary Measurements: Transverse Asymmetry

• In main measurement, not 100% longitudinal polarization
• Transversely polarized beam (H or V) on unpolarized target
• Parity-conserving, T-odd transverse asymmetry of order ppm

Bn =
2=(T ∗

1γ · T2γ)

|T1γ |2

• Access to imaginary part of 2-photon exchange amplitude T2γ
• Extensive transverse spin program:

• elastic ~ep in H, C, Al at E = 1.165 GeV
• inelastic ~ep → ∆ in H, C, Al at E = 0.877 GeV and 1.165 GeV
• elastic ~ee in H at E = 0.877 GeV
• deep inelastic ~ep in H at W = 2.5 GeV
• pion electro-production in H at E = 3.3 GeV
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Ancillary Measurements: Transverse Asymmetry on H

• Vertical and horizontal polarization: 90◦ phase shift
• Observe the expected cancellation with slow helicity reversal
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Ancillary Measurements: Transverse Asymmetry on H

• Shown asymmetries not corrected for backgrounds or
polarization

• Preliminary transverse asymmetry in ~ep in hydrogen:
Bn = −5.35 ± 0.07(stat) ± 0.15(syst) ppm

• More precise than any other measurement by a factor 5
• Theory: Pasquini & Vanderhaeghen, Afanasev & Merenkov,

Gorchtein
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Ancillary Measurements: Transverse Asymmetry on H

Theoretical interpretation

• Theory: Pasquini & Vanderhaeghen, Afanasev & Merenkov,
Gorchtein
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Ancillary Measurements: Transverse Asymmetry on C, Al

Aluminum: non-zero transverse asymmetry (uncorrected data)

• Aluminum target was alloy with 10% contamination
• Needs corrections for quasielastic and inelastic scattering, and

for nuclear excited states(?)
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Ancillary Measurements: Transverse Asymmetry on C, Al

Projected uncertainties for C and Al transverse asymmetries

• Theory from Phys. Rev. C77, 044606 (2008)
• Pb data from PRL 109, 192501 (2012)
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Data Quality: Understanding the Width

Asymmetry width

Battery width

Measurement
• 240 Hz helicity quartets

(+−−+ or −++−)
• Uncertainty = RMS/

√
N

• 200 ppm in 4 milliseconds
• < 1 ppm in 5 minutes

Asymmetry width

• Pure counting statistics ≈ 200 ppm
• + detector resolution ≈ 90 ppm
• + current monitor ≈ 50 ppm
• + target boiling ≈ 57 ppm
• = observed width ≈ 233 ppm
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Data Quality: Helicity-Correlated Beam Properties

Natural beam motion
• Measured

asymmetry
correlated with
beam position and
angles

• False asymmetries
• Linear regression

removes effect:
Ac =

∑
i
∂A
∂xi

∆xi
i = x , y , x ′, y ′,E
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Data Quality: Helicity-Correlated Beam Properties

Driven beam motion
• Deliberate motion
• i = x , y , x ′, y ′,E

• Sensitivity slopes ∂A
∂xi

determined
from natural beam motion or from
beam modulation → results
consistent between methods

• Actual regression corrections
smaller than specifications
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Section 8

First Results from the QWeak Experiment
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Ancillary Measurements: Transverse Asymmetry

• Transversely polarized beam on unpolarized target
• Parity-conserving (T-odd) transverse asymmetry of order ppm

Bn =
2=(T ∗

1γ · T2γ)

|T1γ |2

• Access to imaginary part of 2-photon exchange amplitude T2γ

• False asymmetry for parity-violating asymmetry APV due to
residual transverse polarization and broken azimuthal
symmetry
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Ancillary Measurements: Transverse Asymmetry

• Vertical polarization: cancellation with helicity reversal
• Horizontal polarization: 90◦ phase shift from vertical
• Shown asymmetries not corrected for backgrounds or

polarization
• Preliminary transverse asymmetry:

Bn = −5.27 ± 0.07(stat) ± 0.14(syst) ppm
• Transverse asymmetry leakage in APV < 2 ppb
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Ancillary Measurements: Transverse Asymmetry

• Pasquini & Vanderhaeghen: proton and πN, resonance region
with MAID, asymmetry dominated by inelastic contribution

• Afanasev & Merenkov: forward Compton amplitudes from real
photo-production

• E = 1.160 GeV, θ = 7.8◦, Q2 = 0.026 GeV2

• Other measurements: 0.877 GeV and 3.36 GeV, on Al and C
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First Determination of the Weak Charge of the Proton

First results
• Publication in Phys. Rev. Lett. 111, 141803 (2013)
• Based on only 4% of the total data set: first experiment with

direct access to proton’s weak charge
• 25 times more data available: projected release in fall 2014

Global analysis method by Young, Roche, Carlini, Thomas

• Fit of parity-violating asymmetry data on H, D, 4He, up to
Q2 = 0.63 GeV2, and rotated to zero forward angle

• Free parameters were C1u, C1d , strange charge radius ρs and
magnetic moment µs , and isoscalar axial form factor (zero at
tree level)
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Determination of the Weak Charge of the Proton

Reduced parity-violating asymmetry
APV = APV

A0
= Qp

W + Q2 · B(Q2, θ = 0) with A0 = − GF Q2
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Sensitivity to New Physics
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Data Quality: Understanding the Width

Asymmetry width

Battery width

Measurement
• 240 Hz helicity quartets

(+−−+ or −++−)
• Uncertainty = RMS/

√
N

• 200 ppm in 4 milliseconds
• < 1 ppm in 5 minutes

Asymmetry width

• Pure counting statistics ≈ 200 ppm
• + detector resolution ≈ 90 ppm
• + current monitor ≈ 50 ppm
• + target boiling ≈ 57 ppm
• = observed width ≈ 233 ppm
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The QWeak Experiment: Tracking Mode

Horizontal drift chambers
• 32 wires in 0.5 m wide planes
• 12 planes per octant
• 2 instrumented octants
• Constructed at Va Tech

Vertical drift chambers
• 181 wires in 2 m long planes
• 4 planes per octant (65◦ tilt)
• 2 instrumented octants
• Constructed at W&M
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The QWeak Experiment: Tracking Mode

Reconstruction of angle θ
(preliminary)

Reconstruction of momentum
transfer Q2 (preliminary)

• Periodic tracking runs at 50 pA (HDC/VDC) to few nA (VDC)
• VDC track resolution of 250µm meets design goal
• HDC track resolution of 350µm (work ongoing)
• Required precision of 0.5% on value of Q2 achievable
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The QWeak Experiment: Tracking Mode
Simulation of electrons hitting main detector bar

Projection of reconstructed tracks to detector bar

Focal plane scanner detector (1 cm square quartz)
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Data Quality: Helicity-Correlated Beam Properties

Natural beam motion
• Measured

asymmetry
correlated with
beam position and
angles

• False asymmetries
• Linear regression

removes effect:
Ac =

∑
i
∂A
∂xi

∆xi
i = x , y , x ′, y ′,E
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Data Quality: Helicity-Correlated Beam Properties

Driven beam motion
• Deliberate motion
• i = x , y , x ′, y ′,E

• Sensitivity slopes ∂A
∂xi

determined
from natural beam motion or from
beam modulation → results
consistent between methods

• Actual regression corrections
smaller than specifications
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Sensitivity to New Physics

Lower bound on new physics (95% CL)

Figure: Young, Carlini, Thomas, Roche (2007)

Constraints from
• Atomic PV:

Λ
g > 0.4 TeV

• PV electron
scattering:
Λ
g > 0.9 TeV

Projection QWeak

• Λ
g > 2 TeV

• 4% precision
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Parity-Violating Electron Scattering: Quark Couplings

Weak vector charge uud
Qp

W = −2(2C1u + C1d)

Early experiments

• SLAC and APV

Electron scattering

• HAPPEx, G0
• PVA4/Mainz
• SAMPLE/Bates

QWeak experiment
Figure: Young, Carlini, Thomas, Roche
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Section 10

Precision Polarimetry with Atomic Hydrogen
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Precision Electroweak Experiments: JLab 12 GeV

MOLLER Experiment
Source ∆APV
Mom. transfer Q2 0.5%
Beam polarization 0.4%
2nd order beam 0.4%
Inelastic ep 0.4%
Elastic ep 0.3%

SoLID PV-DIS Experiment
Source ∆APV
Beam polarization 0.4%
Rad. corrections 0.3%
Mom. transfer Q2 0.5%
Inelastic ep 0.2%
Statistics 0.3%

Precision beam polarimetry is crucial to these experiments.
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Precision Electroweak Experiments: Polarimetry

Compton Polarimetry

• ~e~γ → eγ (polarized laser)
• Detection e and/or γ
• Only when beam energy

above few hundred MeV
• High photon polarization

but low asymmetry
• Total systematics ∼ 1%

• laser polarization
• detector linearity

Møller Polarimetry

• ~e~e → ee (magnetized Fe)
• Low current because

temperature induces
demagnetization

• High asymmetry but low
target polarization

• Levchuk effect: scattering
off internal shell electrons

• Intermittent measurements
at different beam conditions

• Total systematics ∼ 1%
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Atomic Hydrogen Polarimetry

Møller polarimetry

• 300 mK cold atomic H
• 8 T solenoid trap
• 3 · 1016 atoms/cm2

• 3 · 1015−17 atoms/cm3

• 100% polarization of e in
the atomic hydrogen

Advantages

• High beam currents
• No Levchuk effect
• Non-invasive, continuous

Reference: E. Chudakov, V. Luppov, IEEE Trans. on Nucl. Sc.
51, 1533 (2004).
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Atomic Hydrogen Polarimetry: 100% e Polarization

Hyperfine Splitting in Magnetic Field

• Force ~∇(−~µ · ~B) will pull
|a〉 and |b〉 into field

• Energy splitting of ∆E = 2µB:
↑ / ↓= exp(−∆E/kT ) ≈ 10−14

• Low energy states with |sesp〉:
• |d〉 = |↑⇑〉
• |c〉 = cos θ |↑⇓〉+ sin θ |↓⇑〉
• |b〉 = |↓⇓〉
• |a〉 = cos θ |↓⇑〉 − sin θ |↑⇓〉
• with sin θ ≈ 0.00035

• Pe(↓) ≈ 1 with only 105 dilution
from |↑⇓〉 in |a〉 at B = 8 T

• Pp(⇑) ≈ 0.06 because 53% |a〉
and 47% |b〉
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Atomic Hydrogen Polarimetry: Expected Contaminations

Without beam
• Recombined molecular hydrogen suppressed by coating of cell

with superfluid He, ∼ 10−5

• Residual gasses, can be measured with beam to < 0.1%

With 100µA beam

• 497 MHz RF depolarization for 200 GHz |a〉 → |c〉 transition,
tuning of field to avoid resonances, uncertainty ∼ 2 · 10−4

• Ion-electron contamination: builds up at 20%/s in beam
region, cleaning with ~E field of ∼ 1 V/cm, uncertainty ∼ 10−5
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Atomic Hydrogen Polarimetry: Projected Uncertainties

Projected Systematic Uncertainties ∆Pe in Møller polarimetry

Source Fe-foil Hydrogen
Target polarization 0.63% 0.01%
Analyzing power 0.30% 0.10%
Levchuk effect 0.50% 0.00%
Deadtime 0.30% 0.10%
Background 0.30% 0.10%
Other 0.30% 0.00%
Unknown unknowns 0.00% 0.30%(?)
Total 1.0% 0.35%
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Atomic Hydrogen Polarimetry: Collaboration with Mainz

P2 Experiment in Mainz: Weak Charge of the Proton

• “QWeak experiment” with improved statistical precision
• Dedicated 200 MeV accelerator MESA under construction
• Required precision of electron beam polarimetry < 0.5%
• Strong motivation for collaboration on a short timescale

(installation in 2017)
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Ancillary Measurements: Background Processes

Aluminum asymmetry
(preliminary)

• Asymmetry consistent with
order of magnitude expected

• Asymmetry: few ppm
• Dilution f of 3%
• Correction ≈ 20%

Dilution measurement
(preliminary)
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Radiative Corrections

Modified expression, Qp
W = 1 − 4 sin2 θW only at tree level

• Qp
W = (ρNC +∆e)(1−4 sin2 θW (0)+∆′

e)+BWW +BZZ +BγZ

• ∆sin2 θW (MZ ), WW , ZZ box diagrams: uncertainty small
• γZ box: 8% correction with ≈ 1% uncertainty

Corrections to Qp
W ≈ 0.07

• Verification in “DIS” region, calculation by Melnitchouk
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The QWeak Experiment
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The QWeak Experiment: Main Detector

Event mode characterization
• Larger signal in + or - end

depending on proximity
• Number of photo-electrons
≈ 85 per track

Integrating data chain noise

• Current source (battery)
• Width ≈ 2.3 ppm

• Actual data with beam
• Width ≈ 240 ppm

• Not limited by electronic
noise
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The QWeak Experiment: Systematic Uncertainties

Projected uncertainties on Ameas and Qp
W

Source of Contribution to Contribution to
uncertainty ∆Ameas/Ameas ∆Qp

W /Qp
W

Statistics 2.1% 3.2%
Hadronic structure – 1.5%
Beam polarimetry 1.0% 1.5%
Measurement Q2 0.5% 1.0%
Backgrounds 0.5% 0.7%
Helicity-correlated
beam properties 0.5% 0.7%
Total 2.5% 4.1%
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Parity-Violating Electron Scattering
Reduced parity-violating asymmetry

APV (p) = APV (p) · 4πα
√

2
−GF Q2

Q2→0−−−−→ Qp
W + Q2 · B(Q2)

Figure: Young, Carlini, Thomas, Roche (2007)

At Q2 = 0
• PDG
• SM

QWeak Exp

• Q2 = 0.026 GeV2
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Parity-Violating Electron Scattering: sin2 θW

Running of sin2 θW
(Qp

W = 1 − 4 sin2 θW )

• Higher order loop diagrams
• sin2 θW varies with Q2
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The QWeak Experiment: Toroidal Magnet (QTOR)

QTOR installed in Hall C
• Full assembly and power supply tests
• Mapped at half field, within tolerances

QTOR properties

• Warm coils
• 10000 A
• 6 m high

Large coils aligned
to 1 mm

At MIT/Bates
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The QWeak Experiment: Main Detector

Low noise electronics
• Event rate: 800 MHz/PMT
• Asymmetry of only 0.2 ppm
• Low noise electronics

(custom design, TRIUMF)

I-V Preamplifier 18-bit 500 kHz sampling ADC

Delivered, tested: noise is 3 times lower than counting statistics
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The QWeak Experiment: Systematic Uncertainties

Reminder: weak vector charges

• Proton weak charge
Qp

W ≈ −0.072
• Neutron weak charge Qn

W = −1

Sources of neutron scattering

• Al target windows
• Secondary collimator events
• Small number of events, but

huge false PV asymmetry

Al target windows
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The QWeak Experiment: Systematic Uncertainties

Largest projected uncertainties on Qp
W

• Total uncertainty on Qp
W : 4.1%

• Statistical uncertainty: 3.2%
• Hadronic structure: 1.5%
• Beam polarimetry: 1.5%
• Measurement of Q2: 1.0%
• Background events: 0.7%
• Helicity-correlated beam properties: 0.7%

Responsibilities of MIT group

• Track reconstruction/momentum determination software
• Construction of Compton polarimeter
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The QWeak Experiment: Tracking Mode
Gas-electron multiplier (GEM)

• Very close to target, very high dose
• GEMs have high radiation hardness
• Several days of radcon cool-down in GEM bunker
• Remotely controlled rotator mounted on collimator
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The QWeak Experiment: Tracking Mode

Horizontal drift chambers (HDC)

• 12 planes per octant
• u, v , x , u, v , x planes per assembly

• 4 + 1 constructed, tested
• Residuals from cosmic events
• Ready for installation

HDC rotator system

54



The QWeak Experiment: Tracking Mode

Vertical drift chambers (VDC)

• 181 wires in 2 m wide planes
• u, v , u, v planes per assembly
• Multiplexed read-out on delay lines

Principle of operation

VDC rotator system
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Electroweak Interaction: Running of sin2 θW

Atomic parity-violation on 133Cs

• New calculation in many-body atomic theory
• Porsev, Beloy, Derevianko; arXiv:0902.0335 [hep-ph]
• Experiment: QW (133Cs) = −73.25 ± 0.29 ± 0.20
• Standard Model: QW (133Cs) = −73.16 ± 0.03

NuTeV anomaly explained

• Originally, 3σ deviation from Standard Model
• Erler, Langacker: strange quark PDFs
• Londergan, Thomas: charge symmetry violation, mu 6= md

• Cloet, Bentz, Thomas: in-medium modifications to PDFs,
isovector EMC-type effect

• Entire anomaly accounted for (everybody stops looking. . . )
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Electroweak Interaction

Running of sin2 θW

• Higher order loop diagrams
• sin2 θW varies with Q2
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Electroweak Interaction

Running of sin2 θW

• Higher order loop diagrams
• sin2 θW varies with Q2
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Sensitivity to New Physics
New physics

• Consider effective contact interaction
• Coupling constant g , mass scale Λ

• Effective charges hu
V and hd

V

Effective Lagrangian

LPV
e−q = LPV

SM + LPV
New

= −GF√
2

eγµγ5e
∑

q
C1qqγµq +

g2

4Λ2 eγµγ5e
∑

q
hV

q qγµq

Erler et al., PRD 68, 016006 (2003) 58



Other Experiments
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