
Low Level RF Controls for SC Linacs, JLab April 24 - 27, 2001 M. Luong, A. Mosnier

Basic rules for the design of RF Controls
in High Intensity Proton Linacs 

Particularities of proton linacs wrt electron linacs …
� Non-zero synchronous phase

⇒ needs reactive beam-loading compensation

� Phase slippage (inside and outside cavities)

⇒ larger sensitivity to cavity field fluctuations

� Different Dynamic properties of a given cavity family + phase slippage 

⇒ groups of multiple cavities driven by 1 common klystron

can only be used at sufficiently high energy

 

Basic rules
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Example of SEL scheme with analog control system implemented
on SC cavity with non-relativistic beam (φb = 30°) = TTF capture cavity (Ein = 250 keV)

Main features :

• self-excited loop (which ensures the cavity
frequency tracking during the filling time)

• Cavity field controlled by means of  I/Q
modulator (during filling and beam-on time)

• starting phase of the self oscillator fixed by
injection of a very low level signal

• klystron phase loop including a phase modulator
 to compensate any phase shift of the klystron

tests at DESY in February 1997   Eacc=12.5 MV/m, 6 mA

Amplitude & phase errors : ± 4 10-4 & ± 0.1°peak-to-peak
fluctuations mainly from high frequency noise (uncorrelated
from cavity to cavity ⇒ small effect on beam energy spread)

0.6°

Basic rules
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Basic Model for Gain-Stability Considerations

These 2 loops can be considered as independent for the stability discussion, having the same
transfer function. A simple representation can be found with several, but however realistic
assumptions in the case of SC cavity : 

2 Control loops for field stabilization in cavity : real part loop and imaginary part loop

• klystron and I/Q modulator bandwidths are much higher than that of the cavity,
• closest harmonic mode (5π/6 for SNS and 8π/9 for TESLA about 800 kHz from the fundamental
  mode in both cases) is filtered out properly using HF pass-band filter and audio notch filter.

Simple model for analog feedback

For fLP = 400 kHz, K = 180, F0 = 1.3 GHz,
and QL = 3 106, the phase margin from
the model is 86°.

High gain and good phase margin are allowed for proportional analog feedback

TTF capt. Cav.

Basic rules

measurement
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Gain-Delay Discussion in Proportional Digital Feedback Control 

Open loop transfer function
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Gain-Delay Discussion in Proportional Digital Feedback Control
Results for the case of SNS 
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Stability could be more critical for digital feedback because of delay
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Sampling of the measurement …

Bunch Trains are 945 ns spaced apart
⇒ Systematic cavity voltage drop
    due to beam-loading

Better to sample field measurement
Just before beginning of bunch train*

In order to avoid systematic extra-power
from feedback loops
Even in absence of any perturbation

* in case of digital system with delay,
sampling time  should be multiple
of bunch train spacing 
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Beam-loading compensation
during beam pulse
detuning angle such that cavity voltage looks “real”
generator current and cavity voltage in phase φc=φg

steady-state regime with beam
(“flat” Vc and φccurves) 

during cavity filling
One wants at fill end φc=φg whatever the detuning
Automatically satisfied with SEL scheme
Not the case for a pure GDR scheme

Pg = Pg
β + 1( )2
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 Simulation code = PSTAB
•  initially developed for relativistic beams has been extended to low beta beams
•  can handle all major field error sources

 (Lorentz forces, microphonics, input energy offsets, beam charge jitter,
 multiple cavities driven by one single power source, etc)

•  includes feedback system and extra power calculation (+ delay for digital system)
•  with N cavities driven by a common klystron,

 solves the 6xN coupled differential equations per power source :

- 3 differential equations per cavity for beam-cavity interaction
once the linac configuration has been defined (cavity types, number of cryomodules, design accelerating
field and synchronous phase) a reference particle is launched through the linac in order to set the nominal
phase of the field with respect to bunch at the entrance of all cavities

- 3xN equations per klystron for cavity field
dynamics of each resonator described by 2 first order differential equations,
plus another one modelling dynamic cavity detuning by the Lorentz forces
beam-loading is modelled by a cavity voltage drop during each bunch passage with a magnitude varying
from cavity to another (particle speed varies)

To minimize the needed RF power :
1) Qex is set near the optimal coupling "  7.105 for SNS
2) Cavity is detuned to compensate the reactive beam-loading due φs ? 0
    and fine tuning adjustement for minimizing Lorentz force effects

Simulations
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Linac Descr iption
*****************
Starting Energy (M eV)     :   185.6
Nb sect ors                :     2
 
*** Sector w ith Cavity Type 1
Acc gradient (M V/m )       :    10.11
Nb Cav / cryom odule       :     3
Nb cryom odules            :    11
Cavity spaci ng (m )        :     0.51
Inter-cryom  drift (m )     :     2.7752
Nb cavi ties / Klyst ron    :     1
Beam  phase standar d (deg)  :   -22.
 
*** Sector w ith Cavity Type 2
Acc gradient (M V/m )       :    12.56
Nb Cav / cryom odule       :     4
Nb cryom odules            :    15
Cavity spaci ng (m )        :     0.48
Inter-cryom  drift (m )     :     2.866
Nb cavi ties / Klyst ron    :     1
Beam  phase standar d (deg)  :   -22.
 
      Total Nb cavi ties  =  93
      Total Nb klyst rons =  93
 
Linac Phasing
*************
      Sector  0   Ending Energy =  185.600
      Sector  1   Ending Energy =  388.526
      Sector  2   Ending Energy =  974.595

Beam  param eters
***************
Peak Beam  cur rent (m A)    :    52.
Current fluct uation (% )   :     0.
Harm onic (Frf/Fb)         :     2.
Nb of bunches / train     :   260
Nb of m issi ng bunches     :   120
Nb of bunch trains        :  1060

Example of PSTAB simulations
with SNS parameters
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Cavity detuning for beam-loading compensation

2 systems were tested :
analog (G=100) & digital (G=25 delay 4.7us)

Simulations
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Simulations

⇒ Lorentz forces effects
In order to decrease RF power ⇒ pre-detuning of the cavity (fres = fope at approximately half the beam pulse)
Total detuning = Sum of detunings for Lorentz forces + beam-loading compensation
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⇒ Additional microphonics effects
With mechanical vibrations, feedback loops closed during the filling time, following pre-determined amplitude
and phase laws, to ensure min RF power during beam pulse
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⇒ Additional current fluctuation effect
With random bunch charge fluctuation, the feedback system prevents from dramatic cumulative effects of
several consecutive bunch charge errors
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With random energy and phase errors of the input beam ( ± 1 MeV ± 1 deg ) and

assuming no fluctuations of the cavity fields

⇒ the final energy and phase can not be smaller than 1.3 MeV and 6 deg .

Simulations
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Simulations

SEL scheme analog system digital system (4.7 µs delay)

∆E max (keV) ∆φ max (deg) ∆P/PI (%) ∆P/PQ (%)

Lorentz forces only 4.8 0.51 0.2 9.0

8 - 4 Hz/[MV/m]2 17.1 1.61 1.2 11.2

with µphonics A=100 Hz 17.8 0.53 0.3 16.1

Freq = 100 Hz 70.4 1.68 1.3 17.9

with µphonics A=100 Hz 40.7 0.43 0.3 15.3

Freq = 1000 Hz 158.5 1.78 1.3 16.9

with tuning drift 12.3 0.54 0.3 16.6

± 100 Hz (random) 57.6 1.75 1.2 18.3

with charge fluctuation 46.5 0.59 4.2 9.1

± 5 % (random) 96.3 1.68 3.3 11.3

with input beam offset 1303.7 6.14 5.9 11.6

± 1 MeV ± 1 deg (random) 1329.0 6.76 4.1 11.1

multi-perturbation* 1321.0 6.25 7.8 18.5

1405.5 7.10 5.7 18.0

* Lorentz forces + µphonics (Freq=100 Hz) + charge fluctuation + input beam offset
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Simulations

GDR scheme analog system digital system (4.7 µs delay)

∆E max (keV) ∆φ max (deg) ∆P/PI (%) ∆P/PQ (%)

Lorentz forces only 5.7 0.51 0.5 8.7

8 - 4 Hz/[MV/m]2 27.9 1.51 2.0 9.4

with µphonics A=100 Hz 17.8 0.52 0.7 15.5

Freq = 100 Hz 96.3 1.56 3.1 15.7

with µphonics A=100 Hz 39.8 0.42 0.8 14.7

Freq = 1000 Hz 165.3 1.60 3.2 14.7

with tuning drift 12.6 0.54 0.8 16.0

± 100 Hz (random) 48.4 1.63 3.2 16.4

with charge fluctuation 46.6 0.59 4.3 8.8

± 5 % (random) 108.3 1.58 4.2 9.5

with input beam offset 1304.1 6.14 6.2 11.2

± 1 MeV ± 1 deg (random) 1332.5 6.70 5.1 9.4

multi-perturbation* 1322.1 6.25 8.2 17.9

1407.1 7.05 7.4 15.6

* Lorentz forces + µphonics (Freq=100 Hz) + charge fluctuation + input beam offset
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Conclusion

� SEL scheme vs GDR scheme

SEL requires smaller in-phase power and larger out-of-phase power
(SEL keeps naturally the amplitude but shifts the phase)

� Analog vs digital

 generally digital with delay increases extra-power and errors
unless total delay time "  1 µs 

for a random input beam offset :
extra-power is slightly smaller but final errors are larger
(because feedback can't follow with sudden changes)

Simulations
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Multiple cavities per klystron

� With relativistic electron beams, multiple cavities powered by a single power
source easily controlled by the vector sum of the cavity voltages

� With proton beams, even when the vector sum kept perfectly constant
individual cavity voltages can fluctuate with large amplitudes
(phase slippage + change of dynamic behaviour of low-β cavities as energy � )

We could however envisage
to feed individually the cavities at the low energy part of the SC linac &
to feed groups of cavities by common klystrons at the high energy part
(lower phase slippages + closer dynamic cavity properties)

For example, groups of 4 cavities only for high-β cavities in SNS Linac
Simulations with spreads in
� Lorentz force detuning K 20 % 2 Hz / [MV/m]2

� mechanical time constant τm 20 %
� cavity coupling Qex 20 %

Multi-cavity
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Multi-cavity
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⇒ Lorentz forces & charge fluctuation (5%) effects
Bunch energy deviations at beginning mainly induced by Qex spread
Extra-power at end mainly induced by current fluctuations
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SEL scheme analog system

∆E max (keV) ∆φ max (deg) ∆P/PI (%) ∆P/PQ (%)

Lorentz forces only 418 0.26 1.6 2.8

4 - 2 Hz/[MV/m]2

with µphonics A=100 Hz 688 0.93 2.5 6.4

Freq = 100 Hz

with charge fluctuation 418 0.31 8.9 2.9

± 5 % (random)

with input beam offset 1600 6.1 11.9 5.8

± 1 MeV ± 1 deg (random)

multi-perturbation* 1875 6.4 16.3 8.9

* Lorentz forces + µphonics (Freq=100 Hz) + charge fluctuation + input beam offset

Multi-cavity


