Where are the Cascade Pentaquarks (Ξ_5) and what are their widths?

by Herry Kwee

Physics Department
College of William and Mary
2003

This talk is based on hep-ph/0307396 and hep-ph/0310038 by C.D.Carone, C.E.Carlson, H.J.Kwee and V.Nazaryan

Pentaquark $(q^4\bar{q})$

 $SU(3)_F: 3 \otimes 3 \otimes 3 \otimes 3 \otimes \overline{3} \to \text{many possibilities}$ (multiplets)

 θ^+ (s = +1) member of 35plet, 27plet or antidecuplet.

Why antidecuplet?

isospin = 0 (searches for $\theta^{++} \to \text{no result}$)

Other Properties:

- spin = 1/2?
- parity?

All member of multiplet: same mass without $SU(3)_F$ symmetry breaking.

Symmetry Breaking:

- 1. strange quark mass (m_s)
- 2. Flavor-Spin interaction

Hidden Strangeness:

Figure 1: $SU(3)_F$ Antidecuplet for Pentaquark

- naively, $m(\Xi_5^+) m(\Theta^+) = m_s \approx 150 \text{ MeV}.$
- Mixing: effect only on N_5 and Σ_5 .

Effective Flavor-Spin Interaction,

isospin conserving, breaking $SU(3)_F$

Mass correction:

$$\Delta M = -C_{SI} \sum_{\alpha < \beta} (\tau \sigma)_{\alpha} \cdot (\tau \sigma)_{\beta} - C_{47} \sum_{\alpha < \beta, i=4}^{7} (\lambda^{i} \sigma)_{\alpha} \cdot (\lambda^{i} \sigma)_{\beta}$$
$$-C_{8} \sum_{\alpha < \beta} (\lambda^{8} \sigma)_{\alpha} \cdot (\lambda^{8} \sigma)_{\beta}$$

 C_{SI} , C_{47} and C_8 fit to baryon octet and decuplet (q^3)

Mass formula for (q^3) baryon

$$M = M_0^{(3)} + x_1 C_{SI} + x_2 C_{47} + x_3 C_8 + n_s \Delta m_s$$

Result from fitting:

$$M_0^{(3)} = 1340.5 \pm 5.3 \text{ MeV}, \quad \Delta m_s = 136.3 \pm 2.5 \text{ MeV}$$

 $C_{SI} = 28.2 \pm 0.5 \text{ MeV}, \quad C_{47} = 20.7 \pm 0.5 \text{ MeV},$
 $C_8 = 19.7 \pm 1.2 \text{ MeV}$

Negative Parity Pentaquark

- all q's and \bar{q} are in orbital ground state
- totally antisymmetric Color, Flavor, Spin (CFS) wavefunction (q^4)

The CFS wavefunction are:

(qq)(qq)

$$|(\mathbf{3}, \overline{\mathbf{6}}, 1)\rangle = \frac{1}{\sqrt{3}} |(\overline{\mathbf{3}}, \mathbf{6}, 1)(\overline{\mathbf{3}}, \mathbf{6}, 1)\rangle + \frac{1}{\sqrt{12}} [|(\mathbf{6}, \mathbf{6}, 0)(\overline{\mathbf{3}}, \mathbf{6}, 1)\rangle + |(\overline{\mathbf{3}}, \mathbf{6}, 1)(\mathbf{6}, \mathbf{6}, 0)\rangle]$$

$$- \frac{1}{2} [|(\mathbf{6}, \overline{\mathbf{3}}, 1)(\overline{\mathbf{3}}, \overline{\mathbf{3}}, 0)\rangle + |(\overline{\mathbf{3}}, \overline{\mathbf{3}}, 0)(\mathbf{6}, \overline{\mathbf{3}}, 1)\rangle]$$

combined with $|(\mathbf{\bar{3}}, \mathbf{\bar{3}}, 1/2)\rangle$ to form $|(\mathbf{1}, \mathbf{\overline{10}}, 1/2)\rangle$

 $(\mathbf{q}\mathbf{q}\mathbf{q})(\mathbf{q}\mathbf{\bar{q}})$

$$|(\mathbf{1}, \overline{\mathbf{10}}, 1/2)\rangle = \frac{1}{2} |(\mathbf{1}, \mathbf{8}, 1/2)(\mathbf{1}, \mathbf{8}, 0)\rangle + \frac{1}{\sqrt{12}} |(\mathbf{1}, \mathbf{8}, 1/2)(\mathbf{1}, \mathbf{8}, 1)\rangle - \frac{1}{\sqrt{3}} |(\mathbf{8}, \mathbf{8}, 3/2)(\mathbf{8}, \mathbf{8}, 1)\rangle + \frac{1}{2} |(\mathbf{8}, \mathbf{8}, 1/2)(\mathbf{8}, \mathbf{8}, 0)\rangle + \frac{1}{\sqrt{12}} |(\mathbf{8}, \mathbf{8}, 1/2)(\mathbf{8}, \mathbf{8}, 1)\rangle$$

Mass formula for Pentaquark:

$$M = M_0^{(5)} + x_1 C_{SI} + x_2 C_{47} + x_3 C_8 + n_s^{eff} \Delta m_s$$

Note:

- 1. M_0^5 : no reliable theoretical prediction, largest effect for $q^3 \to q^4 \bar{q}$
- 2. C_{SI} , C_{47} and C_8 : assumed constant

State	x_1	x_2	x_3	n_s^{eff}	M (Me	V)
Θ^+	-10	0	10/3	1	1542	
N_5	-20/3	2	-2	4/3	1618	w/o
Σ_5	-25/9	-2/9	-11/3	5/3	1694	mixing
Ξ_5	5/3	-20/3	-5/3	2	1771	

Table 1: Prediction for Negative Parity.

Positive Parity Pentaquark

- one of the q's is in P-state and \bar{q} is in S-state \rightarrow higher mass due to excitation energy (in HO = $\hbar\omega$),
- Flavor-Spin wavefunction: totally symmetric $(q^4) \rightarrow$ maximal Flavor-Spin interaction \rightarrow lower total mass. $W/O SU(3)_F$ symmetry breaking:

$$\Delta M_{\chi} = \begin{cases} -20/3C_{\chi} & S^4 \text{ (negative)} \\ -28C_{\chi} & S^3P \text{ (positive)} \end{cases}$$

Assuming $\hbar\omega \approx 250 \text{ MeV}$ and $C_{\chi} \approx 25 \text{ MeV}$,

$$M(S^{3}P) - M(S^{4}) = \hbar\omega - 64/3C_{\chi} \approx -280 \text{ MeV}$$

• Color-Orbital wavefunction: totally antisymmetric (q^4) .

Flavor-Spin wavefunction

$$|(\overline{\mathbf{10}}, 1/2)\rangle = \{\frac{1}{\sqrt{2}} |(\bar{\mathbf{3}}, 0)(\bar{\mathbf{3}}, 0)\rangle_{\bar{\mathbf{6}}, 0} + \frac{1}{\sqrt{2}} |(\mathbf{6}, 1)(\mathbf{6}, 1)\rangle_{\bar{\mathbf{6}}, 0}\} \otimes |(\bar{\mathbf{3}}, 1/2)\rangle$$

State	x_1	x_2	x_3	n_s^{eff}	M (MeV	V)
Θ^+	-30	0	2	1	1542	
N_5	-20	-8	0	4/3	1665	w/o
Σ_5	-31/3	-44/3	-3	5/3	1786	mixing
Ξ_5	-1	-20	-7	2	1906	

Table 2: Prediction for Positive Parity.

Note:

 $q\bar{q}$ does not contribute to the matrix element $(\langle q\bar{q}|(\lambda^F\sigma)_{\alpha}(\lambda^F\sigma)_{\beta}|q\bar{q}\rangle=0)$

Width Prediction

$$\Gamma = \frac{M}{32\pi} \sqrt{\left(1 - \left(\frac{m+\mu}{M}\right)^2\right) \left(1 - \left(\frac{m-\mu}{M}\right)^2\right)} \times \left[\left(1 \pm \frac{m}{M}\right)^2 - \left(\frac{\mu}{M}\right)^2\right] [A]^2 \left|\langle nK^+ | \Theta^+ \rangle\right|^2}$$

with M: pentaquark mass, m: q^3 baryon mass and μ : meson mass

- +: S-wave decay, negative parity
- -: P-wave decay, positive parity

 $[A]^2 = A$ number from group theory

Decay	$ A/A_0 ^2$	$\Gamma/\Gamma_0(+ parity)$	Γ/Γ_0 (- parity)
$\Theta^+ \to pK^0$	1	0.97	0.99
$\Xi_5^+ \to \Xi^0 \pi^+$	1	3.23	1.69
$\Xi_5^+ \to \Sigma^+ \bar{K}^0$	1	2.22	0.99

SU(3) decay predictions for the highest isospin members of antidecuplet.

$$\Gamma_0$$
 is for $\Theta^+ \to nK^+$

Conclusion

- mass splitting in multiplet: from m_s and Flavor-Spin interaction
- overall Positive parity mass is less than Negative parity
- Positive parity has wider split in mass spectrum than negative parity

Numerical results:

Negative Parity

$$M(\Xi_5) = 1771 \quad \text{MeV} \qquad \qquad \frac{\Gamma(\Xi_5)}{\Gamma(\Theta^+)} = 1.35$$

Positive Parity

$$M(\Xi_5) = 1906 \quad \text{MeV} \qquad \frac{\Gamma(\Xi_5)}{\Gamma(\Theta^+)} = 2.76$$

Acknowledgments:

The speaker would like to thank C.D.Carone, C.E.Carlson and V.R.Nazaryan for useful comments and discussion in preparing this talk.