Where are the Cascade Pentaquarks $\left(\Xi_{5}\right)$ and what are their widths?

by Herry Kwee
Physics Department
College of William and Mary
2003

This talk is based on hep-ph/0307396 and hep-ph/0310038 by C.D.Carone,
C.E.Carlson, H.J.Kwee and V.Nazaryan

Pentaquark $\left(q^{4} \bar{q}\right)$

$S U(3)_{F}: 3 \otimes 3 \otimes 3 \otimes 3 \otimes \overline{3} \rightarrow$ many possibilities (multiplets)
$\theta^{+}(\mathrm{s}=+1)$ member of 35 plet, 27 plet or antidecuplet.
Why antidecuplet?
isospin $=0$ (searches for $\theta^{++} \rightarrow$ no result $)$
Other Properties:

- $\operatorname{spin}=1 / 2$?
- parity ?

All member of multiplet: same mass without $S U(3)_{F}$ symmetry breaking.
Symmetry Breaking:

1. strange quark mass $\left(m_{s}\right)$
2. Flavor-Spin interaction

Hidden Strangeness:

Figure 1: $S U(3)_{F}$ Antidecuplet for Pentaquark

- naively, $m\left(\Xi_{5}^{+}\right)-m\left(\Theta^{+}\right)=m_{s} \approx 150 \mathrm{MeV}$.
- Mixing: effect only on N_{5} and Σ_{5}.

Effective Flavor-Spin Interaction,

isospin conserving, breaking $S U(3)_{F}$
Mass correction:

$$
\begin{aligned}
\Delta M= & -C_{S I} \sum_{\alpha<\beta}(\tau \sigma)_{\alpha} \cdot(\tau \sigma)_{\beta}-C_{47} \sum_{\alpha<\beta, i=4}^{7}\left(\lambda^{i} \sigma\right)_{\alpha} \cdot\left(\lambda^{i} \sigma\right)_{\beta} \\
& -C_{8} \sum_{\alpha<\beta}\left(\lambda^{8} \sigma\right)_{\alpha} \cdot\left(\lambda^{8} \sigma\right)_{\beta}
\end{aligned}
$$

$C_{S I}, C_{47}$ and C_{8} fit to baryon octet and decuplet $\left(q^{3}\right)$
Mass formula for $\left(q^{3}\right)$ baryon

$$
M=M_{0}^{(3)}+x_{1} C_{S I}+x_{2} C_{47}+x_{3} C_{8}+n_{s} \Delta m_{s}
$$

Result from fitting:

$$
\begin{aligned}
M_{0}^{(3)} & =1340.5 \pm 5.3 \mathrm{MeV}, & \Delta m_{s}=136.3 \pm 2.5 \mathrm{MeV} \\
C_{S I} & =28.2 \pm 0.5 \mathrm{MeV}, & C_{47}=20.7 \pm 0.5 \mathrm{MeV} \\
C_{8} & =19.7 \pm 1.2 \mathrm{MeV} &
\end{aligned}
$$

Negative Parity Pentaquark

- all $q^{\prime} s$ and \bar{q} are in orbital ground state
- totally antisymmetric Color, Flavor, Spin (CFS) wavefunction (q^{4})

The CFS wavefunction are:
$(\mathbf{q q})(\mathbf{q q})$

$$
\begin{aligned}
|(\mathbf{3}, \overline{\mathbf{6}}, 1)\rangle & =\frac{1}{\sqrt{3}}|(\overline{\mathbf{3}}, \mathbf{6}, 1)(\overline{\mathbf{3}}, \mathbf{6}, 1)\rangle+\frac{1}{\sqrt{12}}[|(\mathbf{6}, \mathbf{6}, 0)(\overline{\mathbf{3}}, \mathbf{6}, 1)\rangle+|(\overline{\mathbf{3}}, \mathbf{6}, 1)(\mathbf{6}, \mathbf{6}, 0)\rangle] \\
& -\frac{1}{2}[|(\mathbf{6}, \overline{\mathbf{3}}, 1)(\overline{\mathbf{3}}, \overline{\mathbf{3}}, 0)\rangle+|(\overline{\mathbf{3}}, \overline{\mathbf{3}}, 0)(\mathbf{6}, \overline{\mathbf{3}}, 1)\rangle]
\end{aligned}
$$

combined with $|(\overline{\mathbf{3}}, \overline{\mathbf{3}}, 1 / 2)\rangle$ to form $|(\mathbf{1}, \overline{\mathbf{1 0}}, 1 / 2)\rangle$
$(\mathbf{q q q})(\mathbf{q} \overline{\mathbf{q}})$

$$
\begin{aligned}
|(\mathbf{1}, \overline{\mathbf{1 0}}, 1 / 2)\rangle & =\frac{1}{2}|(\mathbf{1}, \mathbf{8}, 1 / 2)(\mathbf{1}, \mathbf{8}, 0)\rangle+\frac{1}{\sqrt{12}}|(\mathbf{1}, \mathbf{8}, 1 / 2)(\mathbf{1}, \mathbf{8}, 1)\rangle-\frac{1}{\sqrt{3}}|(\mathbf{8}, \mathbf{8}, 3 / 2)(\mathbf{8}, \mathbf{8}, 1)\rangle \\
& +\frac{1}{2}|(\mathbf{8}, \mathbf{8}, 1 / 2)(\mathbf{8}, \mathbf{8}, 0)\rangle+\frac{1}{\sqrt{12}}|(\mathbf{8}, \mathbf{8}, 1 / 2)(\mathbf{8}, \mathbf{8}, 1)\rangle
\end{aligned}
$$

Mass formula for Pentaquark:

$$
M=M_{0}^{(5)}+x_{1} C_{S I}+x_{2} C_{47}+x_{3} C_{8}+n_{s}^{e f f} \Delta m_{s}
$$

Note:

1. M_{0}^{5} : no reliable theoretical prediction, largest effect for $q^{3} \rightarrow q^{4} \bar{q}$
2. $C_{S I}, C_{47}$ and C_{8} : assumed constant

State	x_{1}	x_{2}	x_{3}	$n_{s}^{\text {eff }}$	M (MeV)	
Θ^{+}	-10	0	$10 / 3$	1	1542	
N_{5}	$-20 / 3$	2	-2	$4 / 3$	1618	w/o
Σ_{5}	$-25 / 9$	$-2 / 9$	$-11 / 3$	$5 / 3$	1694	mixing
Ξ_{5}	$5 / 3$	$-20 / 3$	$-5 / 3$	2	1771	

Table 1: Prediction for Negative Parity.

Positive Parity Pentaquark

- one of the $q^{\prime} s$ is in P-state and \bar{q} is in S-state \rightarrow higher mass due to excitation energy (in $\mathrm{HO}=\hbar \omega$),
- Flavor-Spin wavefunction: totally $\operatorname{symmetric}\left(q^{4}\right) \rightarrow$ maximal Flavor-Spin interaction \rightarrow lower total mass. W/O $S U(3)_{F}$ symmetry breaking:

$$
\Delta M_{\chi}=\left\{\begin{array}{cl}
-20 / 3 C_{\chi} & S^{4} \quad \text { (negative) } \\
-28 C_{\chi} & S^{3} P
\end{array}\right. \text { (positive) }
$$

Assuming $\hbar \omega \approx 250 \mathrm{MeV}$ and $C_{\chi} \approx 25 \mathrm{MeV}$,

$$
M\left(S^{3} P\right)-M\left(S^{4}\right)=\hbar \omega-64 / 3 C_{\chi} \approx-280 \mathrm{MeV}
$$

- Color-Orbital wavefunction: totally antisymmetric $\left(q^{4}\right)$.

Flavor-Spin wavefunction

State	x_{1}	x_{2}	x_{3}	$n_{s}^{e f f}$	M	
Θ^{+}	-30	0	2	1	1542	
N_{5}	-20	-8	0	$4 / 3$	1665	w/o
Σ_{5}	$-31 / 3$	$-44 / 3$	-3	$5 / 3$	1786	mixing
Ξ_{5}	-1	-20	-7	2	1906	

Table 2: Prediction for Positive Parity.

Note:

$q \bar{q}$ does not contribute to the matrix element $\left(\langle q \bar{q}|\left(\lambda^{F} \sigma\right)_{\alpha}\left(\lambda^{F} \sigma\right)_{\beta}|q \bar{q}\rangle=0\right)$

Width Prediction

$$
\begin{aligned}
\Gamma & =\frac{M}{32 \pi} \sqrt{\left(1-\left(\frac{m+\mu}{M}\right)^{2}\right)\left(1-\left(\frac{m-\mu}{M}\right)^{2}\right)} \\
& \times\left[\left(1 \pm \frac{m}{M}\right)^{2}-\left(\frac{\mu}{M}\right)^{2}\right][A]^{2}\left|\left\langle n K^{+} \mid \Theta^{+}\right\rangle\right|^{2}
\end{aligned}
$$

with M : pentaquark mass, m : q^{3} baryon mass and μ : meson mass

+ : S-wave decay, negative parity
-: P-wave decay, positive parity
$[A]^{2}=$ A number from group theory

Decay	$\left\|A / A_{0}\right\|^{2}$	$\Gamma / \Gamma_{0}(+$ parity $)$	$\Gamma / \Gamma_{0}(-$ parity $)$
$\Theta^{+} \rightarrow p K^{0}$	1	0.97	0.99
$\Xi_{5}^{+} \rightarrow \Xi^{0} \pi^{+}$	1	3.23	1.69
$\Xi_{5}^{+} \rightarrow \Sigma^{+} \bar{K}^{0}$	1	2.22	0.99

$\mathrm{SU}(3)$ decay predictions for the highest isospin members of antidecuplet.
Γ_{0} is for $\Theta^{+} \rightarrow n K^{+}$

Conclusion

- mass splitting in multiplet: from m_{s} and Flavor-Spin interaction
- overall Positive parity mass is less than Negative parity
- Positive parity has wider split in mass spectrum than negative parity

Numerical results:

Negative Parity

$$
M\left(\Xi_{5}\right)=1771 \quad \mathrm{MeV} \quad \frac{\Gamma\left(\Xi_{5}\right)}{\Gamma\left(\Theta^{+}\right)}=1.35
$$

Positive Parity

$$
M\left(\Xi_{5}\right)=1906 \quad \mathrm{MeV} \quad \frac{\Gamma\left(\Xi_{5}\right)}{\Gamma\left(\Theta^{+}\right)}=2.76
$$

Acknowledgments:

The speaker would like to thank C.D.Carone, C.E.Carlson and V.R.Nazaryan for useful comments and discussion in preparing this talk.

