Searching for Cascade Pentaquarks with CLAS

John W. Price
University of California, Los Angeles

Pentaquark 2003 Workshop

Introduction - Ξ Pentaquarks $\left(\Xi_{5}\right)$

\square Needed to establish pentaquark antidecuplet
\square Large range of mass, width predictions

- Diakonov et al.: $\mathrm{m}_{\Xi 5}=2070 \mathrm{MeV}, \Gamma_{\Xi 5} \sim 140 \mathrm{MeV}$
- Jaffe/Wilczek: $\mathrm{m}_{\Xi 5}=1750 \mathrm{MeV}, \Gamma_{\Xi 5} \sim 15 \mathrm{MeV}$
- Many others...
\square Finding Ξ_{5} critical to understanding pentaquark nature

Ξ_{5} Experimental Status

\square NA49 sees a signal in $p p$ at 17.2 GeV; strength similar to $\Xi(1530)$

WA89 not so sure
Confirmation needed by a third experiment

ㅁ ...but who can do it...?

Detecting Ξ_{5}

- Decay measurements
- Reconstruct the Ξ_{5} via its decay to $\Xi \pi$ or ΣK
- Production measurements
- Infer the Ξ_{5} using a missing mass measurement
\square Different techniques are complementary
- Must obtain same mass for each technique

Ξ_{5} Decay Measurements

- $\Xi^{--} \rightarrow \Xi^{-} \pi^{-} \rightarrow \Lambda \pi^{-} \pi^{-} \rightarrow \mathrm{p} \pi^{-} \pi^{-} \pi^{-}$
\square Two secondary vertices (Ξ^{-}, Λ decays)
$\square \Xi^{--} \rightarrow \Sigma^{-} \mathrm{K}^{-} \rightarrow \mathrm{n} \pi^{-} \mathrm{K}^{-}$
- One secondary vertex (Σ^{-}decay); need neutron ID
- $\Xi^{+} \rightarrow \Xi^{0} \pi^{+} \rightarrow \Lambda \pi^{0} \pi^{+} \rightarrow \mathrm{p} \pi^{-} \gamma \gamma \pi^{+}$
- Two secondary vertices; need good photon ID
$\square \Xi^{+} \rightarrow \Sigma^{+} \mathrm{K}^{0} \rightarrow \mathrm{p} \pi^{0} \pi^{+} \pi^{-} \rightarrow \mathrm{p} \gamma \gamma \pi^{+} \pi^{-}$
- One secondary vertex; need good photon ID

Ξ_{5} Production Measurements

\square Detect everything but the Ξ_{5}; infer by m_{x}

- $\mathrm{K}^{-} \mathrm{p} \rightarrow \mathrm{K}^{+} \pi^{-} \Xi^{+}$
$\left(\mathrm{p}_{\mathrm{K}}>2.7 \mathrm{GeV} / c\right)$
ㅁ $\mathrm{K}^{-} \mathrm{n} \rightarrow \mathrm{K}^{+} \Xi^{--}$
$\left(\mathrm{p}_{\mathrm{K}}>2.3 \mathrm{GeV} / c\right.$)
- $\gamma \mathrm{p} \rightarrow \mathrm{K}^{+} \mathrm{K}^{+} \pi^{-} \pi^{-} \Xi^{+}$
($\mathrm{E}_{\gamma}>4.7 \mathrm{GeV}$)
- $\gamma \mathrm{p} \rightarrow \mathrm{K}^{+} \mathrm{K}^{0} \pi^{-} \Xi^{+}$
($\mathrm{E}_{\gamma}>4.3 \mathrm{GeV}$)
- $\gamma \mathrm{n} \rightarrow \mathrm{K}^{+} \mathrm{K}^{+} \Xi^{--}$
($\mathrm{E}_{\gamma}>3.9 \mathrm{GeV}$)
\square Good π / K separation needed

Where can we do it?

- CERN

- WA89 no longer taking data
\square NA49 doing heavy ion work (for now)
\square BNL
a AGS doesn't have high enough K momentum
- RHIC (STAR) looking, but no signal yet
\square Japan
- SPring-8 doesn't have enough γ energy
- SLAC, HERMES ... ?

The CLAS Detector

- Large acceptance - Holes in forward, backward directions, along coils

ㅁ + bends in, - bends out (or vice versa)
\square High energy

- $\mathrm{E}_{\gamma}<6 \mathrm{GeV}$
- Active, interested collaboration

CLAS Data Summary

- Three data sets available

	Energy	Beam	Target	Torus
Run name	(GeV)	Flux	Position	Current
g6a	$3.2-3.9$	Low	Center	I
g6b	$3.0-5.2$	Medium	Center	I
g6c	$4.8-5.4$	High	Upstream	$\mathrm{I} / 2$

\square Existing Ξ program being extended to Ξ_{5} search
\square Only $g 6 b, g 6 c$ viable for Ξ_{5} search

g6a Results - Mass sensitivity

\square Clear ground state signal

- Highest attainable mass: 1880 MeV
- We lose $\sim 150 \mathrm{MeV} / \mathrm{K}^{+}$ in $g 6 a$
- Tighter PID \Rightarrow start to see $\Xi^{-}(1530)$
- No chance to see Ξ_{5}

g6b Results $-\pi / K$ misidentification

$\square \Xi^{-}(1321)$ and $\Xi^{-}(1530)$ seen

- Tighter PID still under study
- Loose PID leads to π / K misidentification
- Reflection of $\mathrm{K}^{+} \pi^{+} \Sigma^{-}$ seen at $\sim 1.1 \mathrm{GeV}$

$$
\mathrm{K}^{+} \pi^{+} \Sigma^{-}
$$

固

CLAS search for Ξ_{5}

- Look at m_{x} of $\mathrm{K}^{+} \mathrm{K}^{+} \pi^{+}$ system
- $\mathrm{m}_{\mathrm{x}}(\max) \sim 2.3 \mathrm{GeV}$
- No statement about Ξ_{5} from $g 6 b$ (except that we need more energy)
- Would be easier on the neutron (higher mass sensitivity)

\square

g6c Results - Final state cuts

\square g6c has large bkgd

- Suppress by requring proton in final state
\square Every PDG Ξ state matches an enhancement
- Persistent structure at 1770 and 1860 MeV
- Enough energy for strong statement on Ξ_{5}
 w/small background

Short- and Long-Term Plans

\square Short term issue: does the $\Xi^{--}(1862)$ exist?

- New data are needed ASAP to answer
- CLAS Proposals under consideration
\square Long-term issues: too many to list
- What are the properties of the Ξ_{5} ?
- What are the properties of the pentaquarks in general?
- Are there excited Ξ_{5} ?
- New CLAS proposal for a large data set
\square Discussion session after workshop on Saturday

Conclusions

\square The existence of the Ξ_{5} is critically important to our understanding of the pentaquark sector

- Understanding the Ξ_{5} is just as important as understanding the Θ^{+}
\square Searching for the Ξ_{5} is beyond the capability (or not the main interest) of most facilities today
\square The existing Ξ program at CLAS is in the unique position of being able to take new data to contribute to this search on both p and d targets

