Searching for Cascade Pentaquarks with CLAS

John W. Price University of California, Los Angeles

Pentaquark 2003 Workshop

John W. Price

Pentaquark 2003

Introduction – Ξ Pentaquarks (Ξ_5)

- Needed to establish pentaquark antidecuplet
 Large range of mass, width predictions
 Diakonov *et al.*: m_{E5} = 2070 MeV, Γ_{E5} ~ 140 MeV
 Jaffe/Wilczek: m_{E5} = 1750 MeV, Γ_{E5} ~ 15 MeV
 Many others...
 Finding Ξ critical to understanding pentaquar
- □ Finding Ξ_5 critical to understanding pentaquark nature

$\Xi_{_5}$ Experimental Status

- NA49 sees a signal in *pp* at 17.2 GeV; strength similar to Ξ(1530)
- □ WA89 not so sure
- Confirmation needed by a third experiment
- □ ...but who can do it...?

Detecting Ξ_{5}

- Decay measurements
 - **Ω** Reconstruct the Ξ_5 via its decay to $\Xi \pi$ or ΣK
- Production measurements
 - □ Infer the Ξ_5 using a missing mass measurement
- Different techniques are complementary
 - Must obtain same mass for each technique

Ξ_{ς} Decay Measurements

$\Box \Xi^{--} \to \Xi^{-} \pi^{-} \to \Lambda \pi^{-} \pi^{-} \to p \pi^{-} \pi^{-} \pi^{-}$

 \Box Two secondary vertices (Ξ^- , Λ decays)

 $\Box \ \Xi^{--} \to \Sigma^{-} \mathrm{K}^{-} \to \mathrm{n} \pi^{-} \mathrm{K}^{-}$

One secondary vertex (Σ⁻ decay); need neutron ID
Ξ⁺ → Ξ⁰π⁺ → Λπ⁰π⁺ → pπ⁻γγπ⁺
Two secondary vertices; need good photon ID
Ξ⁺ → Σ⁺K⁰ → pπ⁰π⁺π⁻ → pγγπ⁺π⁻
One secondary vertex; need good photon ID

John W. Price

Pentaquark 2003

Ξ₅ Production Measurements

- Detect everything but the Ξ_5 ; infer by m_X
 - □ $K^-p \to K^+\pi^-\Xi^+$ (p_K > 2.7 GeV/c)
 - □ $K^-n \to K^+ \Xi^{--}$ (p_K > 2.3 GeV/c)
 - $\Box \gamma p \rightarrow K^{+}K^{+}\pi^{-}\pi^{-}\Xi^{+} \qquad (E_{\gamma} > 4.7 \text{ GeV})$
 - $\Box \gamma p \rightarrow K^{+}K^{0}\pi^{-}\Xi^{+} \qquad (E_{\gamma} > 4.3 \text{ GeV})$
 - $\Box \gamma n \rightarrow K^{+}K^{+}\Xi^{--} \qquad (E_{\gamma} > 3.9 \text{ GeV})$
- □ Good π/K separation needed

Where can we do it?

CERN

- □ WA89 no longer taking data
- □ NA49 doing heavy ion work (for now)
- **BNL**
 - □ AGS doesn't have high enough K momentum
 - □ RHIC (STAR) looking, but no signal yet

Japan

- □ SPring-8 doesn't have enough γ energy
- □ SLAC, HERMES ... ?

John W. Price

Pentaquark 2003

The CLAS Detector

□ Large acceptance

- Holes in forward, backward directions, along coils
- + bends in, bends out (or vice versa)
- High energy
 - $\Box E_{\gamma} < 6 \text{ GeV}$
- Active, interested collaboration

Pentaquark 2003

CLAS Data Summary

Three data sets available

	Energy	Beam	Target	Torus
Run name	(GeV)	Flux	Position	Current
g6a	3.2-3.9	Low	Center	I
g6b	3.0-5.2	Medium	Center	
gбс	4.8-5.4	High	Upstream	I/2

 \square Existing Ξ program being extended to Ξ_5 search

□ Only g6b, g6c viable for Ξ_5 search

John W. Price

Pentaquark 2003

g6a Results – Mass sensitivity

- Clear ground state signal
- Highest attainable mass: 1880 MeV
- We lose ~150 MeV/K⁺ in g6a
- □ Tighter PID \Rightarrow start to see $\Xi^{-}(1530)$
 - \square No chance to see Ξ_{5}

Pentaquark 2003

g6b Results – π/K misidentification

- $\Xi^{-}(1321)$ and $\Xi^{-}(1530)$ seen
- Tighter PID still under study
- Loose PID leads to π/K misidentification
- □ Reflection of $K^+\pi^+\Sigma^$ seen at ~1.1 GeV

John W. Price

Pentaquark 2003

CLAS search for Ξ_{5}

- □ Look at m_X of $K^+K^+\pi^+$ system
 - \square m_x(max) ~ 2.3 GeV
 - No statement about Ξ_5 from *g6b* (except that we need more energy)
 - Would be easier on the neutron (higher mass sensitivity)

Pentaquark 2003

g6c Results – Final state cuts

- □ g6c has large bkgd
 - Suppress by requring proton in final state
- Every PDG E state matches an enhancement
 - Persistent structure at 1770 and 1860 MeV
- Enough energy for strong statement on Ξ₅
 w/small background

John W. Price

Pentaquark 2003

Short- and Long-Term Plans

- □ Short term issue: does the $\Xi^{--}(1862)$ exist?
 - □ New data are needed ASAP to answer
 - CLAS Proposals under consideration
- Long-term issues: too many to list
 - What are the properties of the Ξ_5 ?
 - □ What are the properties of the pentaquarks in general?
 - Are there excited Ξ_5 ?
- □ New CLAS proposal for a large data set
- Discussion session after workshop on Saturday

John W. Price

Pentaquark 2003

Conclusions

- □ The existence of the Ξ_5 is critically important to our understanding of the pentaquark sector
 - Understanding the Ξ₅ is just as important as
 understanding the Θ⁺
- □ Searching for the Ξ_5 is beyond the capability (or not the main interest) of most facilities today
- □ The existing Ξ program at CLAS is in the unique position of being able to take new data to contribute to this search on both *p* and *d* targets

Pentaquark 2003

