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1. Introduction.

2. Formalism.

3. The Balitsky-Kovchegov equation: features of the solutions.
4. Consequences in eA and HIC.

5. Summary.

Also talks by M. Baker, V. Guzey, J. Jalilian-Marian, A. H. Mueller and K. Tuchin.
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e Experimentally zG(z, Q%) x 27>, A ~ 0.3 = at small = (large
energies), high partonic densities = saturation: parton densities
cannot grow forever (parton fusion balances parton splitting if A, o< 1/g
= non-linear process).
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e Experimentally zG(z, Q%) x 27>, A ~ 0.3 = at small = (large
energies), high partonic densities = saturation: parton densities
cannot grow forever (parton fusion balances parton splitting if A, o< 1/g
= non-linear process).

e Appeal:

1) New regime of QCD, with old ideas (pomeron interaction, multiple
scattering in Reggeon Field Theory, geometrical cross sections,
coherence arguments,...) in a new (QCD) language.

2) Link of small « Physics and ultrarelativistic nuclear collisions (initial
stage of a nuclear collision, enhancement due to nuclear length).

e Basic aim: to study the formulation and consequences of unitarity in
terms of the QCD fields.
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e Linear evolution equations: Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
in In 2, Balistky-Fadin-Kuraev-Lipatov in In (1/z).
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e Linear evolution equations: Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
in In 2, Balistky-Fadin-Kuraev-Lipatov in In (1/z).

e First (twist-four) non-linear correction:
Gribov-Levin-Ryskin-Mueller-Qiu in In ()? (GLR, PR100(83)1; MQ, NPB268(86)427).
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e Linear evolution equations: Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
in In 2, Balistky-Fadin-Kuraev-Lipatov in In (1/z).

e First (twist-four) non-linear correction:
Gribov-Levin-Ryskin-Mueller-Qiu in In ()? (GLR, PR100(83)1; MQ, NPB268(86)427).
e Non-linear, all-twist evolution equation in the saturation region:
Balitsky-Kovchegov in In (1/x) (B, NPB463(96)99; K, PRD60(99)034008).
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e The McLerran-Venugopalan model (mv, PrRD49(94)2233; 3354) treats
classical radiation from color sources moving ultrarelativistically through
a large nucleus. With a form for the color correlators in the target, a
gluon distribution saturated at small k | is obtained: initial condition.
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e The McLerran-Venugopalan model (mv, PrRD49(94)2233; 3354) treats
classical radiation from color sources moving ultrarelativistically through
a large nucleus. With a form for the color correlators in the target, a
gluon distribution saturated at small k | is obtained: initial condition.

e Later on, gluon radiation (quantum evolution) of the color sources was
iIntroduced, which leads to an evolution equation: Color Glass
Condensate (JkMw, PRD55(97)5414; ILM, PLB510(01)133). The rescattering of the
projectile in the nucleus is described through Wilson lines whose
average on target configurations gives the S-matrix (Kw, PRD64(01)114002).

e Key point: fields (occupation numbers) become large (F,., f, < 1/¢°)
= classical arguments, but coupling small = perturbative methods.

e The coupled equations for n-
gluon correlators decouple in
the large N. limit: the BK equa-
tion appears for n = 2; also de-
duced in BFKL (B, EPJC16(00)337) S
a sum of fan diagrams in LL1/x
(o Is fixed).
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le A 332] (0y + HBFKL) q5(]€, b) = —¢2(k, b) for b > r.
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3. The Balitsky-Kovchegov equation:
features of the solutions:

e Asymptotic integrability.
e Scaling.

e Froissart bound.

e Running coupling.

e Beyond BK.

The analytical solution Is unknown: numerical results
will be shown and analytical estimations commented.
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Solutions of BK for y = 0, 5, 10 for GBW (solid), and MV with Q ; = 2 GeV (dashed) and 10 GeV
(dotted) (AAKSW, PRL92(04)082001).
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Asymptotic integrability:

Solutions of BK for y = 0, 5, 10 for GBW (solid), and MV with Q ; = 2 GeV (dashed) and 10 GeV
(dotted) (AAKSW, PRL92(04)082001).
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e Solutions tend to a unlversal shape Independent of the initial

condition; for h = k*V2¢, [ LEh(k) =1, a soliton-like behavior
appears (s, EPJC16(00)337).
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Solutions of BK for y = 0, 5, 10 for GBW (solid), and MV with Q ; = 2 GeV (dashed) and 10 GeV
(dotted) (AAKSW, PRL92(04)082001).
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e Solutions tend to a unlversal shape Independent of the initial

condition; for h = k*V2¢, [ LEh(k) =1, a soliton-like behavior
appears (s, EPJC16(00)337).

e Integrability (for y — oo) has been proved (vp, PRL91(03)232001;
hep-ph/0401215).
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Solutions of BK for y = 0, 5, 10 for GBW (solid), and MV with Q ; = 2 GeV (dashed) and 10 GeV
(dotted) (AAKSW, PRL92(04)082001).
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e Solutions tend to a unlversal shape Independent of the initial

condition; for h = k*V2¢, [ LEh(k) =1, a soliton-like behavior
appears (s, EPJC16(00)337).

e Integrability (for y — oo) has been proved (vp, PRL91(03)232001;
hep-ph/0401215).

e Solution to the IR diffusion problem of BFKL (GBMS, PRD65(02)074037).

Evolution Equations of OCD in the Non-Linear Saturation Readion: 3. BK. —p.7



SCa| | ng Néstor Armesto

Solutions of BK for y = 0, 5, 10 for GBW (solid), and MV with Q ; = 2 GeV (dashed) and 10 GeV
(dotted) (AAKSW, PRL92(04)082001).
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Solutions of BK for y = 0, 5, 10 for GBW (solid), and MV with Q ; = 2 GeV (dashed) and 10 GeV
(dotted) (AAKSW, PRL92(04)082001).
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/0, 0,
e A universal function of k/Q) s appears (AB, EPIC20(01)517; L, EPIC21(01)513).
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Solutions of BK for y = 0, 5, 10 for GBW (solid), and MV with Q ; = 2 GeV (dashed) and 10 GeV
(dotted) (AAKSW, PRL92(04)082001).
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e A universal function of k/Q) s appears (AB, EPIC20(01)517; L, EPIC21(01)513).
o h(k = Q,) = hmax, Q%(y) xx A~1/3 (as expected), and o exp (Ay) with
4 (DLL) < A < 4.88 (BFKL) (LT, NPB573(00)833; LL, NPA696(01)833).
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Solutions of BK for y = 0, 5, 10 for GBW (solid), and MV with Q ; = 2 GeV (dashed) and 10 GeV
(dotted) (AAKSW, PRL92(04)082001).
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k/Q. k/ Q.

e A universal function of k/ Qs/appears (AB, EPJC20(01)517; L, EPJC21(01)5{3).

o h(k = Q,) = hmax, Q%(y) xx A~1/3 (as expected), and o exp (Ay) with
4 (DLL) < A < 4.88 (BFKL) (LT, NPB573(00)833; LL, NPA696(01)833).

e Scaling observed in |-p (sGBK, PRL86(01)596), |-A? (FRWS, PRL90(03)222002).

Evolution Equations of OCD in the Non-Linear Saturation Readion: 3. BK. — .



SCa| | ng Néstor Armesto

Solutions of BK for y = 0, 5, 10 for GBW (solid), and MV with Q ; = 2 GeV (dashed) and 10 GeV
(dotted) (AAKSW, PRL92(04)082001).

y=4
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y=4,6,8,10

- | S initial conditions

sl MV with Q=2 GeV/c
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k/Q. k/ Q.
e A universal function of k/ Qs/appears (AB, EPJC20(01)517; L, EPJC21(01)5{3).

o h(k = Q,) = hmax, Q%(y) xx A~1/3 (as expected), and o exp (Ay) with
4 (DLL) < A < 4.88 (BFKL) (LT, NPB573(00)833; LL, NPA696(01)833).

e Scaling observed in |-p (sGBK, PRL86(01)596), |-A? (FRWS, PRL90(03)222002).

o For Qs < k < ksw(Qs), log corrected shape (v, NPB640(02)331) favored
(AAKSW, PRL92(04)082001) OVEr pure POWer (1M, NPA708(02)327).
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Solution of BK with b-dependence, for fixed r and angle between r and b (GBS, NPB668(03)345).
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Solution of BK with b-dependence, for fixed r and angle between r and b (GBS, NPB668(03)345).

10 5

e Froissart bound, o « In® s, recovered by non-linear effects? Fim,
NPA710(01)373; KW, PRD66(02)051502; PLB551(03)311): b-dependence.
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Solution of BK with b-dependence, for fixed r and angle between r and b (GBS, NPB668(03)345).
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e Froissart bound, o « In® s, recovered by non-linear effects? Fim,
NPA710(01)373; KW, PRD66(02)051502; PLB551(03)311): b-dependence.

e No mass gap = no Froissart expected; initial condition oc e =% for b >
but a tail o« b=+ develops = regulation of the kernel is demanded.
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Solution of BK with b-dependence, for fixed r and angle between r and b (GBS, NPB668(03)345).
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e Froissart bound, o « In® s, recovered by non-linear effects? Fim,
NPA710(01)373; KW, PRD66(02)051502; PLB551(03)311): b-dependence.

e No mass gap = no Froissart expected; initial condition oc e=4? for b >>
but a tail o« b=+ develops = regulation of the kernel is demanded.

e Relevant for soft physics and to really determine Q,(b).
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Running coupling:

Néstor Armesto

Solutions of BK with (two upper curves on the left, lower one on the right), and without running coupling
for different IR regularizations (B, PLB576(03)115); here y is real rapidity.
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Solutions of BK with (two upper curves on the left, lower one on the right), and without running coupling
for different IR regularizations (B, PLB576(03)115); here y is real rapidity.

0.45 ‘ ‘ ‘ ‘ 1e+09
04 F y=6 and 10 1le+08 -
035 L 1e+07 |
1e+06
03 ‘
F N 100000 |
025 F / ;
3 2 10000 |
= o
02 F
1000 |
0.15
100 |
01 F
10
0.05 | . 1 E
0 \ ] | | s 01 | | ! ! ] ] ]
0.01 0.1 1 10 100 1 2 3 4 5 6 7 8 9 10
kiQs(y) y

e A scaling function of k/Q still appears.

Evolution Equations of OCD in the Non-Linear Saturation Reaqion: 3. BK. —p.10



h(y.k)

Running coupling:
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Solutions of BK with (two upper curves on the left, lower one on the right), and without running coupling
for different IR regularizations (B, PLB576(03)115); here y is real rapidity.
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e A scaling function of k/Q still appears.

e Better IR and UV behavior (h = k*V%¢).
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Solutions of BK with (two upper curves on the left, lower one on the right), and without running coupling
for different IR regularizations (B, PLB576(03)115); here y is real rapidity.
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e A scaling function of k/Q still appears.
e Better IR and UV behavior (h = k*V%¢).

o With Q?%(y) oc exp (Ay), A ~ Age/2 (T, 648(03)293; RW, hep-ph/0309306): much
closer to the value ~ 0.3 (for o, ~ 0.2) found in data (GBw, PRD59(99)014017).
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Solutions of BK with (two upper curves on the left, lower one on the right), and without running coupling
for different IR regularizations (B, PLB576(03)115); here y is real rapidity.
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e A scaling function of k/Q still appears.
e Better IR and UV behavior (h = k*V%¢).

o With Q?%(y) oc exp (Ay), A ~ Age/2 (T, 648(03)293; RW, hep-ph/0309306): much
closer to the value ~ 0.3 (for o, ~ 0.2) found in data (GBw, PRD59(99)014017).

e Behavior of ), with A In this case? (v, NPA724(03)223); b-dependence?
(GKLMN, hep-ph/0401021).
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Beyond BK:

Difference between the average of the correlator of 4 Wilson lines and the factorized ansatz (RW,

hep-ph/0309306); here 0 < Y < 2.5 and U = W previously defined.
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hep-ph/0309306); here 0 < Y < 2.5 and U = W previously defined.
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as in BK implies a loss of fluctuations (m, NPA730(04)494; MS, hep-ph/0402193).
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as in BK implies a loss of fluctuations (m, NPA730(04)494; MS, hep-ph/0402193).
e Better use full CGC (JIMWLK equation): far more involved.
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Difference between the average of the correlator of 4 Wilson lines and the factorized ansatz (RW,

hep-ph/0309306); here 0 < Y < 2.5 and U = W previously defined.
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o (Wh@)We()WhHEWr(@2)) = (Wh@)We(2) ) (WhHE)We(s))
as in BK implies a loss of fluctuations (m, NPA730(04)494; MS, hep-ph/0402193).

e Better use full CGC (JIMWLK equation): far more involved.

e This factorization does not seem a large effect (compared to the
typical size ~ 1) but maybe crucial to get the correct small-r behavior.

Evolution Equations of OCD in the Non-Linear Saturation Reaion: 3. BK. —p.11



Néstor Armesto

4. Consequences in eA and HIC:

e eA: I, and heavy flavor production.
e HIC: Cronin effect.

Just two aspects touched, a huge range of applications
IS available, see the other mentioned talks.

Note: x Is usually assumed to be small enough,
< (ZmNRA)_l.
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eA: F5» and heavy flavor production: Néstor Armesto

Results of BK for F>pyp, and charm production in eA collisions (AB, EPJC22(01)351).
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e Fy,: slower increase with 1/z, oc In*(1/z) (but no b-dependence, so
the initial condition determines the b-dependence).
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e Fy,: slower increase with 1/z, oc In*(1/z) (but no b-dependence, so
the initial condition determines the b-dependence).

o If Fop = A¥@QI)F, o~ 0.9 for z ~ 1072 and 0.7 < 0.8 for 2 ~ 1076

e Heavy quark production larger than in collinear factorization (Gwm,
EPJC30(03)387); transverse momenta > than the mass are not negligible.
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H IC Cronln effeCt (I) Néstor Armesto

d];prQ d];fAAQ
dyd<p d“b dyd<p d=b
R = Raa =
pA A1/3_dNpp 7 Ad A4/3 __dNpp
dyd?p d2b dyd?p d2b

e Gluon spectra in pp, pA or AB are computed using some factorization,
N, x f faA fB (GLR, PR100(83)1; KM, NPB529(98)451; B, PLB483(00)105; KKT,
PRD68(03)094013; BGV, hep-ph/0402256), Or classical field simulation v,
PRL84(00)4307; KNV, NPA727(03)427: L, PRC67(03)054903); hadronization or LPHD is
then used. In this way, bulk properties like multiplicities are understood
within saturation (KL, PLB523(01)79).
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__dNpa _dNaa

Ry = dyd?p d2b Ras = dyd?p d2b
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dyd?p d2b dyd?p d2b

e Gluon spectra in pp, pA or AB are computed using some factorization,
N, x f faA fB (GLR, PR100(83)1; KM, NPB529(98)451; B, PLB483(00)105; KKT,
PRD68(03)094013; BGV, hep-ph/0402256), Or classical field simulation v,
PRL84(00)4307; KNV, NPA727(03)427: L, PRC67(03)054903); hadronization or LPHD is
then used. In this way, bulk properties like multiplicities are understood
within saturation (KL, PLB523(01)79).

e It has been argued (kLm, PLB561(03)93) that large transverse momentum
suppression in AuAu at RHIC can be described within saturation. But, if
so, it should also be present in dAu at the same rapidity, which is not the
case — final state effects in AuAu.
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e Gluon spectra in pp, pA or AB are computed using some factorization,
N, x f faA fB (GLR, PR100(83)1; KM, NPB529(98)451; B, PLB483(00)105; KKT,
PRD68(03)094013; BGV, hep-ph/0402256), Or classical field simulation v,
PRL84(00)4307; KNV, NPA727(03)427: L, PRC67(03)054903); hadronization or LPHD is
then used. In this way, bulk properties like multiplicities are understood
within saturation (KL, PLB523(01)79).

e It has been argued (kLm, PLB561(03)93) that large transverse momentum
suppression in AuAu at RHIC can be described within saturation. But, if
so, it should also be present in dAu at the same rapidity, which is not the
case — final state effects in AuAu.

e The presence (Cronin) or absence of enhancement in the ratios is due
to the behavior of gluon distributions just above (), (BKw, PRD68(03)054009);
other ingredients (e.g. factorization, hadronization,...) do not change
this qualitative behavior.
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__dNpa _dNaa

Ry = dyd?p d2b Ras = dyd?p d2b
P A1/3_dNpp 7 A4/3_4Npp
dyd?p d2b dyd?p d2b

e Gluon spectra in pp, pA or AB are computed using some factorization,
N, x f faA fB (GLR, PR100(83)1; KM, NPB529(98)451; B, PLB483(00)105; KKT,
PRD68(03)094013; BGV, hep-ph/0402256), Or classical field simulation v,
PRL84(00)4307; KNV, NPA727(03)427: L, PRC67(03)054903); hadronization or LPHD is
then used. In this way, bulk properties like multiplicities are understood
within saturation (KL, PLB523(01)79).

e It has been argued (kLm, PLB561(03)93) that large transverse momentum
suppression in AuAu at RHIC can be described within saturation. But, if
so, it should also be present in dAu at the same rapidity, which is not the
case — final state effects in AuAu.

e The presence (Cronin) or absence of enhancement in the ratios is due
to the behavior of gluon distributions just above (), (BKw, PRD68(03)054009);
other ingredients (e.g. factorization, hadronization,...) do not change
this qualitative behavior.

e Initial conditions based on multiple scattering (e.g. Glauber-Mueller or
MV) lead to enhancement Ny, PLB577(03)54).
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HIC: Cronin effect (11):

Néstor Armesto

e Evolution erases the Cronin
effect present in the initial con-
dition (AAKSM, PRL92(04)082001; KKT,
PRD68(03)094013).

e Thus, it predicts its disap-
pearance at forward rapidities at
RHIC, seen In data (BRAHMS cCall.,
nucl-ex/0403005).

e No attempt to reproduce data;
uncertainties (e.g. fc vs rc, finite

Non-Linear Evolution of Cronin Enhancement

I~ Albacete, Armesto, Kovner, Salgado, Wiedemann,
2" hep-ph/0307179, PRL to appear.
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5 . S U mm al’y Neéstor Armesto

e Evolution equations in the high parton density, non-linear regime of
QCD are available. They are, together with factorization theorems, the
key ingredient to compute observables in high-energy collisions
involving nuclei.
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e These works have already been crucial to establish the large
transverse momentum suppression measured in AuAu at RHIC as a
final state effect.
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e Evolution equations in the high parton density, non-linear regime of
QCD are available. They are, together with factorization theorems, the
key ingredient to compute observables in high-energy collisions
involving nuclei.

e The main features of the solutions of the most widely used tool, the BK
equation, are known: integrability, scaling and good IR behavior.
Analytical estimates and numerical solutions are available.

e The inclusion of running coupling and effects beyond BK is under
study.

e These works have already been crucial to establish the large
transverse momentum suppression measured in AuAu at RHIC as a
final state effect.

e Many predictions are available. An eA collider is the cleanest place to
study these high parton density phenomena.
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