CGC: Lessons for eA from RHIC

Parton saturation (& CGC)

- Parton density cannot grow indefinitely.
- Recombination (gg \rightarrow g, qg \rightarrow q) kicks in at low x.

See e.g. lancu, Venugopalan hep-ph/0303204 for a recent review History: GLR, Mueller-Qiu, M-V, BK, JIMWLK & many more...

Mark D. Baker

Accessing saturation at RHIC

Nuclei (CGC) \rightarrow partonic system \rightarrow frozen out hadrons Theory

Modeling ansatz: "final state" effects are essentially trivial. Let's see what happens...

Mark D. Baker

Pseudorapidity density

Mark D. Baker

Parton Saturation "predicts" AA

Mark D. Baker

Saturation Works at 200 GeV

Mark D. Baker

Color Glass Condensate at RHIC

• Energy and N_{part} evolution work over a broad range.

Mark D. Baker

More CGC at RHIC

lancu, Venugopalan hep-ph/0303204

Not just Kharzeev!

The QCD Phase Diagram

Mark D. Baker

Mark D. Baker

Parton Saturation: another explanation?

Requires strong saturation (large Q_s)

Nice summary from Jamal Jalilian-Marian (QM04)

- R_{AA} < 1: initial state?
 - BFKL anomalous dim.: 1/Q² ---> (1/Q²)^{0.6}
 - Approximate N_{part} scaling
- 2 ---> 1 processes
 - (reduced back to back correlations)

Accessing saturation at RHIC. (2)

IF saturation is strong enough to cause initial state "jet quenching"
THEN it should show up as suppression in central dAu (R_{dAu} ~ 70%)

NO! The saturation theory overreached

For AuAu:

- •Midrapidity jet-quenching is a "final state effect".
- •The matter produced is very dense and strongly interacting.

Results from dAu near mid-rapidity

PRL91, (2003), 072302-5

Mark D. Baker

Saturation in dA continued

PHOBOS, nucl-ex/0311009, submitted to PRL

Latest KLN result

March 8, 2004 arXiv:hep-ph/0212316 v4

Mark D. Baker

Next idea: Go forward!

Note: PHOBOS $R_{dA}(\eta=1) < RHIC R_{dA}(\eta=0)!$

Spectra in d+Au for η >0

Mark D. Baker

What about backwards rapidity?

Mark D. Baker

Soft particle enhancement/suppression pattern

Miklos Gyulassy QM2004 - courtesy of Nouicer, Steinberg

Mark D. Baker

Where is midrapidity?

Soft particles see full participant zone

Hard, rare partonic collisions should just see NN frame

Mark D. Baker

"Hard" & "soft" particles behave similarly

--- Phobos dN/dη dA/pp scaled by 1.4 /(N_{part}/2)

"high pT" suppression (& enhancement) in dAu may interact with the bulk participant system or may lose rapidity through multiparticle collisions.

Mark D. Baker

Summary

- Heavy ion results do lend support to the ideas of parton saturation (CGC).
 - dN/d η systematics for AA
 - dN/d η for dA (~)
 - "High" p_{T} suppression in forward dA
- Puzzles
 - How can a theory about initial state gluons describe hadrons that have been through so much?
 - Is it an accident that the R_{dA}(η) enhancement/suppression pattern is the same for "hard" and "soft" particles?
- eA data will (eventually) be valuable.

Mark D. Baker

Extras

Comparing AuAu to pp

of NN collisions $\sim A^{4/3}$ (formally Glauber T_{AA}(b)) # of participating nucleons: 2A

Mark D. Baker

"Tau scaling" in DIS 1000 Statso et al., PRL 86 (2001) 596 σ_{tot} γ***p (μb)** 100 **Fit** λ=0.25 10 ZEUS BPT 97 **ZEUS BPC 95** H1 low Q^2 95 ZEUS+H1 high Q² 94-95 O 1 E665 x<0.01 all Q² 0.1 10 ⁻² 10² 10 **10**³ **10**⁻³ $\tau \propto \mathbf{Q}^2 \mathbf{X}^{\lambda}$

Mark D. Baker