eRHIC Detector Performance

Outline

- Detector requirements
- Detector design
- Performance
 - electron (positron) acceptance
 - momentum resolution
 - energy resolution
 - e/π separation

F₂ measurement

- event reconstruction
- kinematical range
- systematic errors
- Summary

Detector Requirements

> eRHIC — a detector for e-p collider experiment

> F_2 and F_L measurement at Q^2 of $0.1 \text{GeV}^2 - 10 \text{GeV}^2$

- low scattering angles
- need acceptance at pseudorapidity down to $\eta = -5$
- The reconstruction relies on measurement of the scattered electron / positron
 - need good momentum resolution
 - need good e / π separation

Vector meson

• good momentum resolution also in the proton direction

High x physics

• hadronic calorimeter

Silicon Tracker

Calorimetry

- Silicon-tungsten EM calorimeters, each ~ 25 X₀ thick
- Scintillator-uranium hadronic calorimeter (ZEUS FCAL)

Central Part z=-110 cm -70 cm +70 cm +110 cm Rmin=30 cm Rmin=40 cm Rmax=60 cm Rmax=70 cm η∈ [-2,-1.3] [-1.3,1.3] [2,1.3]

Tracker Acceptance

Momentum Resolution

> 3 material budgets

- extra light: 2 x 300μm silicon planes only
- light: + 1200µm carbon support
- standard: + 500 μm Al beam pipe

Energy Resolution

> EM calorimeters: 15% - 20% / \sqrt{E} for electrons

e/π Separation

Energy deposition

- hadronic showers are not fully contained, total thickness ~ 1 λ_{I}
- E/p > 0.6
- The resolution is 20% for 1GeV electron => 95% efficiency.

Shower profile

- At 2 GeV, the maximum dE/dx of the EM shower is at 4.7 X₀.
- calorimeter divided to 3 sections 2 X₀, 5 X₀, 18 X₀

NC DIS simulation

Event Reconstruction

Electron method

• for low Q^2 and low x:

 $Q^2 = 2E_e E'_e (1 + \cos \theta_e)$ $y = 1 - \frac{E'_e}{2E_e} (1 - \cos \theta_e)$ $x = \frac{Q^2}{Q^2}$

 With momentum resolution of 1% it can be used down to $\gamma \sim 0.03$, if we require $\sigma x/x < 30\%$

Range for F₂

Electron method - standard

Electron method – extra light (no beam pipe)

F2 - systematic errors

- ➢ High statistics at low Q² − only systematic errors are important
- We want to measure F₂ at 1% error what levels of systematic uncertainties are allowed?

Calorimeter energy scale: 1% uncertainty < 1% effect on F_2

F₂ - systematic errors

Track finding efficiency: 1% uncertainty < 1% effect on F_2

Summary

- A detector for e-p collider has been designed, with focus on measurement at large rapidities.
- The detector performance has been tested using GEANT simulation.
- Good momentum resolution and high acceptance for electrons/positrons may be achieved in the desired kinematical range.
- For low Q² and low x, the electron method for reconstructing kinematics can be successfully used, although the beam pipe is a problem here.
- > First study of systematic errors was done.
- Results are looking encouraging