Short-Baseline Neutrino Physics at an EIC

Outline:

- Motivation
 - v properties
 - v as probes
- v beam and fluxes
- detectors
- measurements

The Physics

The intense proton booster that will be required for an EIC could be used for a world-class neutrino facility.

This facility would allow a host of v physics topics.

- v properties (electroweak)
 - oscillation searches and measurements
 - (at low/high Δm^2 , long/short baseline)
 - v magnetic moment
- as a probe of nucleon structure (strong)
 - form factors (low-energy)
 - structure functions (higher-energy)

I will concentrate on short baseline oscillation searches and form factor measurements.

The Physics: short-baseline oscillations

The $\Delta m^2 \sim 1-10 \text{ eV}^2$ oscillation range is an interesting region.

- astrophysics: ~1eV v_s is a possible explanation of r-process in supernova (astro-ph/0309519, hep-ph/0205029) v_u disappearance

- LSND/MiniBooNE observations ν_{μ} -> ν_{e} and $\underline{\nu}_{\mu}$ -> $\underline{\nu}_{e}$

$$-\Delta m^2 \sim 1-10 \text{ eV}^2 => L/E \sim 1-0.1,$$

E ~1GeV, L~1km-0.1km

The Physics: v magnetic moment

Massive v imply the existence of a v $_{\mathcal{R}}$, therefore it is likely that μ_{v} is nonzero.

- current limit on $\nu_{\,_{\rm H}}$: $\mu_{\,_{\rm v}}$ ~ 6.8x10⁻¹⁰ $\mu_{\,_{\rm B}}$
- minimally extended standard model: $\mu_{\nu} \sim 3 x 10^{\text{-19}} \mu_{\text{B}}$
- but other models predict $\mu_{v} \sim 1 \times 10^{-11} \mu_{B}$
- measure via v e -> v e elastic scattering (need a very intense beam)

Neak and EM Contributions to the u-e Cross Section

The Physics: nucleon structure

Spin structure of the nucleon:

 $\Delta s <> 0$? (from SMC, SLAC, HERMES) Δs can be measured with NC v nucleon elastic scattering.

- Axial part of Nucleon Neutral Weak Current:

$$\langle N | A_{\mu}^{Z} | N \rangle = - \left[\frac{G_{F}}{\sqrt{2}} \right]^{1/2} \langle N | \frac{1}{2} \{ \bar{u} \gamma_{\mu} \gamma_{5} u - \bar{d} \gamma_{\mu} \gamma_{5} d - \bar{s} \gamma_{\mu} \gamma_{5} s \} | N \rangle$$

$$= - \left[\frac{G_{F}}{\sqrt{2}} \right]^{1/2} \langle N | \frac{1}{2} \{ -G_{A}(Q^{2}) \gamma_{\mu} \gamma_{5} \tau_{z} + G_{A}^{s}(Q^{2}) \gamma_{\mu} \gamma_{5} \} | N \rangle$$

O = +1.

I = 1/2

 $\mu = 2.79 \mu_{N}$

11

 $- G_A^{s}(Q^2 = 0) = \Delta s$

- G_A (non-strange part of axial f.f.) known from neutron beta decay
- At low Q², cross section is most-sensitive to axial part (unique to neutrino scattering):
- Therefore, a measurement of v N NC scattering (at low Q²) yields Δs

A ratio method to extract Δs

A measurement of v N NC cross section is sensitive to $\Delta s...$ but a cross-section ratio measurement is better!

A measurement of
$$R_v$$
 (NC/CC) reduces

- experimental systematics (e.g. flux, efficiencies, etc.)
- uncertainties in measured form factors (e.g. M_A)
- nuclear effects

 $\left| R_{\nu}(NC/CC) = \frac{\sigma(\nu_{\mu} p \rightarrow \nu_{\mu} p)}{\sigma(\nu_{\mu} n \rightarrow \mu p)} \right|$

The v beam

Assuming an EIC front-end proton booster with:

- E~10 GeV
- 5x10¹³ protons/pulse
- running at 10-30 Hz
- able to deliver "extra" protons to a target ~2x10⁷ secs/year
- ☆ (1-3)x10²² protons on target (POT)/ year

This is a substantial gain over current or near-future facilities

- K2K: ~1x10²⁰ POT/yr
- FNAL 8GeV booster beamline (for MiniBooNE): ~5x10²⁰ POT/yr
- FNAL 120GeV nuMI beamline (for MINOS): ~5x10²⁰ POT/yr
- JPARC: ~1x10²¹ POT/yr

The v beam

- at 100m ~10⁻¹⁰ v $_{\mu}/$ POT/cm² ~10¹² v $_{\mu}/cm^{2}/year$
- Peak energy will be ~1 GeV (ideal for these measurements)
- large elastic cross section
- nuclear physics uncertainties small
- low enough that backgrounds (e.g. pion prod., DIS) small

A short-baseline detector scenario:

- detectors at 100m, ~1km, ~1000km (depending on osc. results)
- 100m (near) detector:
 - fine grained for good tracking, ~10tons
 - measurements: NC/CC ratio (Δs) , v e elastic (mag. moment), +...
- 1km (intermediate) detector:
 - Cerenkov detector, ~100-1000tons
 - measurements: v_e , \underline{v}_e appearance, +...
- near and intermediate detctors together:
 - v_{μ} disappearance

Expected Event Rates

- with 10²² POT/yr
- 10 ton, 100m near det. or 1000, 1km int. det.
- ~6.6 Mevents/yr!
- ~80k v e elastic scattering events

The following ideas and results are taken from FINeSSE - an experiment recently proposed at FNAL

	$ u_{\mu} $	$\overline{ u_{\mu}}$	$\nu_e + \overline{\nu_e}$	$ u_{\mu} $
ν Reaction	10 ²⁰ POT	10 ²⁰ POT	10 ²⁰ POT	6×10^{20} POT
	1 ton	1 ton	1 ton	9 ton
$CC \ QE, \ \nu_{\mu}n \to \mu^{-}p$	2,715	43	13	146,610
NC EL, $\nu_{\mu}N \rightarrow \nu_{\mu}N$	$1,\!096$	18	5	59,184
$CC \pi^+, \nu_\mu p \to \mu^- p \pi^+$	$1,\!235$	6	8	66,690
$CC \pi^0, \nu_\mu n \to \mu^- p \pi^0$	258	3	2	13,932
$CC \pi^+, \nu_{\mu}n \to \mu^- n\pi^+$	216	2	2	11,664
NC $\pi^0, \nu_\mu p \to \nu_\mu p \pi^0$	211	3	2	11,394
NC $\pi^+, \nu_\mu p \to \nu_\mu n \pi^+$	125	2	0	6,750
NC π^0 , $\nu_\mu n \to \nu_\mu n \pi^0$	158	3	2	8,532
NC $\pi^-, \nu_\mu n \to \nu_\mu p \pi^-$	98	3	0	5,292
CC DIS, $\nu_{\mu}N \to \mu^{-}X$	80	0	3	4,320
NC DIS, $\nu_{\mu}N \rightarrow \nu_{\mu}X$	37	0	2	1,998
CC coh $\pi^+, \nu_{\mu}A \rightarrow \mu^- A \pi^+$	160	5	2	8,640
NC coh π^0 , $\nu_{\mu}A \rightarrow \nu_{\mu}A\pi^0$	98	3	0	5,292
other	117	2	0	6,318
total	6,604	93	41	356,616

Event rates with FNAL Booster (8 GeV) 100m v flux

x1000

FINeSSE Detector

The Vertex Detector...

- to precisely track low-energy protons
- (2.5m)³ active liquid scintillator volume
- 19200 (80x80x3) 1.5 mm WLS fibers on 3cm spacing with 3 orientations

The Muon Rangestack...

- to track and measure the energy of muons

FINeSSE Vertex Detector...

Vertex Detector side view:

- read out with 64 anode PMTs and on-board electronics

STAR PMT w/front-end electronics

- similar scheme to that employed for STAR endcap calorimeter

Simulation of R(NC/CC) measurement...

A fit to the simulated data was performed to estimate the precision of

a Δs measurement with FINeSSE:

Included the effects of:

- statistical errors
- systematic errors due to...
- NCn (v n-w n) scattering misid
- scattering from free protons
- uncertainties in efficiencies
- Q² reconstruction
- nuclear model uncertainties
- form factor uncertainties

Results: $\sigma(\Delta s) = \pm 0.04$ (stats. and exp. sys.)

 $=\pm 0.025$ (f. f. sys)

Recall:

BNL E734 $\Delta s = -0.21 \pm 0.10 \pm 0.10$ polarized DIS $\Delta s = -0.14 \pm 0.03$

- A precise, theoretically robust measurement of ∆s via neutrino-scattering

 χ^2 contours (1 σ ,2 σ ,3 σ) from Δ s fit

A measurement of R(NC/CC) with $\nu~$ and, $\underline{\nu}$

R(NC/CC) vs F_1^{s} , F_2^{s} , G_A^{s} , M_A

for ν and $\underline{\nu}$

- anti-neutrino R(NC/CC) event more sensitive to ∆s
- sensitivity to other f.f.s smaller than to Δs
- but, with a complete data set (neutrino and antineutrino running over range of Q²) would allow an extraction of all strange form-factors (F^s₁, F^s₂, G^s_A, M^s_A)

- a measurement of NC v at an EIC beam would completely determine the nucleon axial structure.

Oscillation physics with FINeSSE:

- 2nd major physics measurement of FINeSSE
- search for ν_{μ} disappearance $(\nu_{\mu} \rightarrow \nu_{x})$ together with MiniBooNE

- covers region of parameter space
favored by some astrophysical models
to explain R-process in supernova
(see e.g. astro-ph/0309519, hep-ph/0205029)

- a measurement of this at an EIC ν beam would significantly increase the reach of a ν_u disappearance search

Summary:

- The intense proton booster that will be required for an EIC could be used to generate unprecedented high-flux of medium-energy neutrinos.

- This beam would allow for several important measurements:

- oscillation searches: $\nu_{\mu} \rightarrow \nu_{e}$, $\underline{\nu}_{\mu} \rightarrow \underline{\nu}_{e}$ and $\nu_{\mu} \rightarrow \nu_{x}$, $\underline{\nu}_{\mu} \rightarrow \underline{\nu}_{x}$ in the $\Delta m^{2} \sim 1-10 eV^{2}$ region

- ν magnetic moment
- measurement of the nucleon axial structure (Δs)
- A plan for an EIC should consider the additional physics made possible with a v component.

