Optimizing Injection Into ERLs:

Space charge, CSR, and optimal energy

<u>Steve Lidia</u>, Alexander Zholents Lawrence Berkeley National Laboratory

Based on our design efforts with LUX, I was asked to speak on the following topics for ERLs Optimal Merger Energy Space charge CSR

This may still happen, but . . .

•The injector design process is part of the larger LUX machine study.

•LUX is a concept for high-brightness x-ray source, with very low average currents (10's μ Amps).

•Some of our choices were driven by very different constraints.

Overview of LUX Project

Injector Requirements

Energy at rf gun exit	~ 10	MeV
Energy at compressor entrance	~ 185	MeV
Bunch charge	1-3	nC
Flat beam injector (1 nC):		
Horizontal emittance	~ 20	mm-mrad
Vertical emittance	< 0.4	mm-mrad
Total emittance	< 3	mm-mrad
Round beam injector (1 nC):		
Emittance	< 2	mm-mrad
Uncorrelated energy spread (rms)	± 3	keV
Correlated energy chirp	± 600	keV
Bunch length at compressor entrance	~ 35	ps
Bunch length at compressor exit	4	ps
Repetition rate	~ 10+	kHz

Strategy for Matching into ERL

- Optimize injector parameters and transport to first arc
- Optimize arc parameters for injection into linac
- Match beams at arc entrance
- Linac lattice symmetrized to allow for possible energy recovery

CSR induced emittance growth is controlled in compressor and injection into linac:

$$H = \beta D'^2 + 2\alpha D'D + (1/\beta + \alpha)D^2$$

 $\Delta \epsilon \sim H \delta E$

Optical Matching from Injector to Linac

ERL Beta Functions

Magnet layout at ERL entrance

Matching into Shifter

Limiting CSR emittance growth in Shifter

The design is largely affected by considerations to limit CSR-induced emittance growth:

-The bunch compressor is split into 2 parts linked by -I transform (approximately)

-Use CSR kicks in downstream compressor to compensate for CSR kicks upstream

-De-symmetrize the two compressor arcs

Stronger dipoles in 1st arc -> 108° turn longer bunch -> weaker CSR Weaker dipoles in 2nd arc-> 72° turn shorter bunch -> stronger CSR

Entire Arc and Shifter Beamline

Emittance and Energy Spread

Optimization of Injector Linac and Optics

- Space charge forces reduced by extending pulse length to 35ps
- Accelerate to ~200 MeV to remove space charge effects before compression
- Linearize longitudinal phase space before compression
- Provide skew quad lattice to create flat beam from magnetized cathode, while limiting asymmetry in beam from unmagnetized cathode
- Provide normal quad lattice to match to arc Twiss parameters
 - Some quads are pulsed to switch between round and flat beams

Injector Overview

~50m (not to scale)

Injector Transverse Beam Dynamics

Injector Longitudinal Beam Dynamics

Transport of low energy spread beam in arcs

Transport of heated beam in arcs

Conclusions

- Optimal energy is linked to reducing space charge effects in the compressor
- CSR induced emittance growth and longitudinal instabilities considerations dominate the design of the arcs and injection lattice
- Slice energy spread from the photoinjector beam is too small to prevent longitudinal instability growth
- Laser 'heating' techniques are useful to introduce a correlated energy spread at high frequency that acts as an uncorrelated spread at frequencies with large gain in the longitudinal CSR instability.

