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Emittance minimization in the RF
photoinjector

• Thermal emittance limit
– Small transverse beam size
– Avoid metal cathodes?

• RF emittance
– Small beam dimensions
– Small acceleration field? Maybe not…

• Space charge emittance
– Original K.J.Kim treatment discouraging
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Space-charge emittance control:
Emittance compensation

• Space-charge emittance
evolution not monotonic in
time

• Multiparticle simulations at
LLNL (Carlsten) show
emittance oscillations,
minimization possible:
Emittance compensation

• Analytical approach
• Scaling laws
• Prescriptions for design

– LCLS (Ferrario WP)
– Superconducting version?
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Transverse dynamics model

• After initial acceleration, space-charge field is mainly
transverse (beam is long in rest frame).

• Force dependent ~ exclusively on local value of current
density I /σ2 (electric field simply from Gauss’ law)

• Linear component of self-force most important. We
initially assume that the beam is nearly uniform in r.

• The linear “slice” model…
– Extend linear model to include nonlinearities within slices?

• Scaling of design physics with respect to charge, λrf



The rms envelope equation
• The rms envelope equation for a cylindrically symmetric, non-

accelerating, space-charge dominated  beam

• Separate DE for each slice (tagged by ζ),
• Each slice has different current
• External focusing measured by betatron wave-number

• Envelope coordinates are in Larmor frame
• Rigid rotator equilibrium (Brillouin flow) depends on I(ζ).

“Pressure” forces negligible
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Equilibrium distributions and space
charge dominated beams

• Maxwell-Vlasov equilibria have
simple asymptotic forms,
dependent on parameter

• Emittance dominated gaussian
• Space-charge dominated uniform

• Uniform beam approximation very
useful
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• Nominally uniform has Debye sheath
• High brightness photoinjector beams have 
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The trace space model
• Each ζ-slice component of the

beam is a line in trace space.
• No thermal effects
• No nonlinearities (lines are

straight!)
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Envelope oscillations about equilibria

• Beam envelope is non-equilibrium problem
• Linearizing the rms envelope equation about equilibrium gives

     Dependent on betatron wave-number, not local beam size or current
• Small amplitude envelope oscillations proceed at 21/2 times the

betatron frequency or assuming uniform beam distribution

This is the matched relativistic plasma frequency
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Phase space picture:
coherent oscillations

• SC beam envelope
oscillations proceed about
– different equilibria,
– with different amplitude
– but at the same frequency

• Behavior leads to emittance
oscillations…but not
damping (yet)

• “1st compensation”, after
gun, before linac…
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Phase space picture:
coherent oscillations

• Emittance (area in phase
space) is maximized at

• Emittance is locally
minimized at

- the beam extrema!
• Fairly good agreement of

simple model with much
more complex beamline

• What about acceleration?
– In the rf gun, in booster linacs…
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Emittance damping: Beam envelope
dynamics under acceleration

• Envelope equation (w/o emittance), with acceleration, RF focusing

• Particular solution - the “invariant envelope” (generalized Brillouin
flow), slowly damping “fixed point”-analogue

• Angle in phase space is independent of current

• Corresponds exactly to entrance/exit kick (matching is naturally at
waists)

• Matching beam to invariant envelope yields stable linear emittance
compensation!
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Envelope oscillations near invariant
envelope, with acceleration

• Linearized envelope equation

• Homogenous solution (independent of current)

• Normalized, projected phase space area oscillates, secularly
damps as offset phase space (conserved!) moves in…
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Validation of  linear emittance
compensation theory

• Theory successfully describes “linear” emittance oscillations
– “Slice” code (HOMDYN) developed that reproduce multiparticle

simulations. Much faster! Ferrario will lecture on this..
– LCLS photoinjector working point found with HOMDYN!

Dash: HOMDYN
Solid: PARMELA



Scaling in photoinjector design

• The envelope equation approach gives rise to
powerful scaling laws

• RF acceleration also amenable to scaling
• Scale designs with respect to:

– Charge
– RF wavelength

• Change from low charge (FEL) to high charge
(LC, wakefield driver) design

• Change RF frequency from one laboratory to
another (e.g. SLAC X-band, SC L-band)

! 

(kp )

! 

(k
RF
)



Charge scaling

• Keep all accelerator/focusing parameters identical
• Density and aspect ratio of the bunch must be preserved

• Contributions to emittance scale with powers of beam size
• Space-charge emittance
• RF/chromatic aberration emittance
• Thermal emittance
• Beam is SC dominated, and emittancs do not affect the

beam envelope evolution; compensation is preserved.
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Wavelength scaling

• First, make acceleration dynamics scale: 
     and

• Focusing (betatron) wavenumbers must
also scale (RF is naturally scaled,           ).
Solenoid field scales as

• Correct scaling of beam size, and plasma
frequency:

• All emittances scale rigorously as
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Brightness, choice of charge and
wavelength

• Charge and pulse length scale together as λ
• Brightness scales strongly with λ,
• This implies low charge for high brightness
• What if you want to stay at a certain charge

(e.g. FEL energy/pulse)
• Mixed scaling:

• For Ferrario scenario, constants from simulation:
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Example: SC gun
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•Scale Ferrario scenario to L-band, SC
•60 MV/m peak (30 average) gun field! 



Nonlinear Emittance Growth

• Nonuniform beams lead to nonlinear fields and emitance growth
• Propagation of non-uniform distributions in equilibrium leads to

irreversible emittance growth (wave-breaking in phase space).
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Fixed point off-axis

"Wave-breaking" occurs in phase space when slope

of (r,r') distribution is infinite.

This example is past wave-breaking , and irreversible 

emittance growth has occurred. 

Fixed point is where space-charge force cancels applied (solenoid) force.
It is in the middle of the Debye sheath region. 



Heuristic slab-model of
non-equilibrium laminar flow

• Laminar flow=no trajectory crossing, no wavebreaking in
phase space

• Consider first free expansion of slab (infinite in y, z) beam
(very non-equilibrium)

• Under laminar flow, charge inside of a given electron is
conserved; one may mark trajectories from initial offset x0.
Equation of motion
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Free-expansion of slab beam
• Solution for electron positions:

• Distribution becomes more linear in
density with expansion

• Example case

• Wavebreaking will occur when
final x is independent of initial x0,

• In free-expanding slab, there is no
wave-breaking for any profile
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Slab-beam in a focusing channel

• Add uniform focusing to equation of motion,

• Solution         
    with
• Wavebreaking  occurs in this case for

•  For physically meaningful distributions,
smoothly, and wavebreaking occurs when

• For matched beam,             half of the beam wave-breaks.
• Stay away from equilibrium! When           there is little

wavebreaking, and irreversible emittance growth avoided.
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Extension to cylindrical
symmetry: 1D simulations

• Matched parabolic
beam shows irreversible
emittance growth after
single betatron period

• Grossly mismatched
single thin lens show
excellent nonlinear
compensation

• Explains robustness of
“first compensation”
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Emittance growth and entropy
• Irreversible emittance

growth is accompanied by
entropy increase

• Far-from-equilibrium thin-
lens case shows ~uniform
beam at maximum

• Near perfect reconstruction
of initial profile

• Small wave-breaking
region in beam edge
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Multiparticle simulation picture:
LCLS case (Ferrario scenario)
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• Case I:  initially uniform beam (in r
and t)
•  Spatial uniformity reproduced after
compensation
•  High quality phase space
•  Most emittance is in beam
longitudinal tails (end effect)
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Multiparticle simulation picture:
Nonuniform beam

• Case II:  Gaussian beam
•  Most emittance growth due to
nonlinearity
•  Large halo formation
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Have we chosen the right beam shape?

• “Beer-can” beam suffers from
– Edge erosion, non-uniform distr.
– Nonlinear fields at edges
– Practical difficulties with laser

• Luiten (Serafini) proposal:
– Use any ultra-short pulse
– Longitudinal expansion of radial

parabolic profile
– Uniform ellipsoidal beam created!
– Linear space-charge fields (3D)

The first beer can
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New direction: marry Luiten proposal
to emittance compensation
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• Initial (not-too-optimized) PARMELA study
• Standard LCLS injector conditions
• Q=0.33 nC, initial long. Gaussian σt =33 fs

(cutoff at 3 σ) trans. Gaussian with σx =0.77
mm (cutoff at 2 σ).

• Final bunch length 1.43 mm (full), 104 A.
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Beam distribution showing ellipsoidal boundary (12.5 MeV)

Beam envelope evolution

Emittance evolution



Challenges and advantages

• Laser very forgiving
• Shorter pulses possible?
• Cathode image charges drive incorrect

final state, not    but
• Excessive energy spread during

compensation
• Charge fluctuations
• Experiment at LLNL, ORION or SPARC


