

Super-Bright Storage Ring as an Alternative to an ERL

Michael Borland
Operations Analysis Group
APS Operations Division
March 20, 2005

A U.S. Department of Energy
Office of Science Laboratory
Operated by The University of Chicago

Goals for New APS Ring Design

- Fit in existing tunnel
- Preserve existing ID beamlines
 - n*40 sectors
- Possibly preserve the bending magnet beamlines
- Provide ~1000-fold increase in average brightness
 - Lower emittance (factor ~50)
 - Longer undulators (factor ~2)
 - More current (factor ~10)

XPS7 Design

- Original XPS design¹ had an error.
- New design is based on similar concepts
- Use combined function magnets
 - Dipole with fixed gradient and sextupole
 - 12 pole magnets for combined quadrupoles, sextupoles, and correctors
- Use variable permanent magnets
 - Only way to get the strengths required
 - Need the stability for ultra-low emittance
 - Need electromagnetic trims for correctors

¹L. Emery and M. Borland, PAC 2003, p 256.

XPS7 Design

- At 7 GeV
 - Natural geometric emittance is 0.08 nm
 - With 100% coupling, normalized emittances are 0.6 μ m
 - 0.18% rms energy spread
- Allows 12 m for straight sections
 - Could give up some to make easier design
 - Zero dispersion to avoid messing up emittance with undulators

XPS7 Lattice

Dynamic Aperture Needs Work!

Color code shows horizontal tune.

Momentum aperture too small: +/- 1%

DA is much too small: $0.1 \text{mm} \times 0.05 \text{mm}$ or $7\sigma \times 3.5\sigma$

Computed with *elegant* (M. Borland)

Beam Lifetime Predictions

Using haissinski and ibsEmittance (L. Emery) and beamLifetimeCalc (M. Borland)

XPS7 Brightness at 1A in 1000 Bunches

- For 100% coupling, peak is 1×10^{23} , ~1500 times present
- Brightness gain from low coupling is modest
- Use 100% coupling, on-axis injection

Using sddsbrightness (H. Shang, R. Dejus)

Top-up Interval

• Top-up interval requirement set by regulation requirement

$$\Delta T_{inj} = \tau \frac{\Delta I}{I}$$

- Presently APS has ~1% regulation
 - 1 hour lifetime implies injection every 36s
 - 0.1 hour lifetime implies injection every 4s
- APS now tops-up every 120s
- "Most" APS users don't see any ill effects from top-up event

Conventional Injection

- In present rings, injection involves accumulation of multiple shots in each rf bucket
 - Modest charge/bunch requirement for injector
- Liouville's theorem requires that we inject off-axis in order to accumulate
 - New particles have residual betatron oscillation and must damp to closed orbit
 - Requires low coupling if vertical aperture<<horizontal
 - Need large dynamic aperture compared to the stored beam dimensions
 - APS DA is $25\sigma_{y}$

On-Axis Injection

- Don't accumulate:
 - New beam kicked in

- Old beam kicked out and transported to dump
- Compatible with full coupling and poor DA
- Kicker technology is a prime consideration
 - Injecting into individual buckets requires very fast kickers
 - APS bucket spacing is 2.8 ns
 - Kicker rise/fall times better than 20ns are hard
 - Injecting long trains requires a long flat-top

Few-bucket filling with on-axis injection

- APS has a standard 24-bucket fill
 - 150 ns spacing
- At 1A, need ~40 mA/bunch
 - 0.05 hour lifetime (3 min)
- For 1% current stability
 - Replace a bunch every 1.8 s
 - Need 67 nA and 120 nC/bunch (!) from injector
- Each bunch is kept for 43 s
 - 80% left when dumped
 - Dump power is 470 W

On-axis One-Shot Filling

- Fill the whole ring at once with a complete pulse train
 - Previous fill is extracted at the same time and dumped
 - Only way to fill a large number of buckets
 - Could also support very flexible fill pattern
- For 1 A and 1000 bunches
 - 84 ns for kicker rise+fall
 - 0.6 hour lifetime
- For 1% regulation
 - Replace beam every 22 s
 - 1.2 kW dump power
 - 170 nA and 3.7 nC/bunch from injector

Conclusion

- XPS7 concept looks promising
 - For 1A beam current, 12m device gives 1500 times present APS brightness
- However, significant issues remain
 - Obtain adequate dynamic and momentum aperture
 - Evaluate magnet feasibility
 - May need to back off from minimum emittance
- Novel operating method utilizes rapid replacement of depleted bunches
- Few-bunch mode requires high charge/bunch injector

