

Matrix analysis for the effects of CSR and longitudinal space charge force in an ERL

R. Hajima (JAERI)

Emittance Growth due to the Coherent Synchrotron Radiation (CSR)

Many studies on bunch compressors for SASE-FELs, experiments and simulations

For ERL light sources (femtoseconds, $\varepsilon_n \le 1 \text{ mm-mrad}$)

CSR is one of the sources of emittance growth.

Linear Analysis of the CSR Effect on the Transverse Beam Dynamics

32nd ICFA Advanced Beam Dynamics WS on ERL, Mar. 19-23, 2005

ERL 2005

ERL 2005

5x5 R-Matrix for the CSR Analysis

5x5 R-matrix for a sector bending magnet

$$R_{bend} = \begin{pmatrix} \cos\theta & \rho\sin\theta & \rho(1-\cos\theta) & \rho(1-\cos\theta) & \rho^{2}(\theta-\sin\theta) \\ -\rho^{-1}\sin\theta & \cos\theta & \sin\theta & \sin\theta & \rho(1-\cos\theta) \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & \rho\theta \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

extension of the conventional 3x3 R-matrix
R. Hajima, JJAP 42, L974 (2003).

Following the momentum dispersion function " η ", we define the CSR wake dispersion function " ζ "

ζ,

momentum dispersion function

 (η, η')

$$\begin{pmatrix} \eta_{x}(s_{1}) \\ \eta'_{x}(s_{1}) \\ 1 \\ 0 \\ 0 \end{pmatrix} = R_{0 \to 1} \begin{pmatrix} \eta_{x}(s_{0}) \\ \eta'_{x}(s_{0}) \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

CSR wake dispersion function

 $\begin{pmatrix} \boldsymbol{\zeta}, \boldsymbol{\zeta}' \end{pmatrix} \begin{pmatrix} \boldsymbol{\zeta}_{x}(s_{1}) \\ \boldsymbol{\zeta}'_{x}(s_{1}) \\ \boldsymbol{0} \\ L_{b}(s_{1}) \\ \boldsymbol{1} \end{pmatrix} = R_{0 \to 1} \begin{pmatrix} \boldsymbol{\zeta}_{x}(s_{0}) \\ \boldsymbol{\zeta}'_{x}(s_{0}) \\ \boldsymbol{0} \\ L_{b}(s_{0}) \\ \boldsymbol{1} \end{pmatrix}$

$$x' - \zeta'_{x} x = 0$$

$$\phi_{\zeta}$$

$$\phi_{\zeta}$$

$$\phi_{\chi}$$

$$f(x) = \frac{1}{2} \frac{\varphi_{\zeta}}{\varphi_{\chi}}$$

We can track the motion of bunch slices.

18 2006

Emittance Growth by CSR, and its Compensation

This analysis is independent of beam parameters, charge, bunch length,

Comparison with Particle Simulations

R-Matrix method gives an optimum design and predicts the emittance growth.

Emittance Growth by Shielded CSR

projection emittance is evaluated by

$$\varepsilon^{2} - \varepsilon_{0}^{2} = \varepsilon_{0} (\Delta \kappa_{rms})^{2} (\beta_{x} \zeta'^{2} + \gamma_{x} \zeta^{2} - 2 \alpha_{x} \zeta \zeta')$$

emittance is a function of CSR wake dispersion and "beam energy-spread" caused by CSR.

CSR wake dispersion : determined by beam transport geometry beam energy spread: determined by bunch parameters and shielding.

shielded CSR is given by impedance analysis.

T. Agoh, K. Yokoya, PRST-AB 7, 054403 (2004). R.L. Warnock, SLAC-PUB-5375 (1990)

Energy Loss, Energy Spread by Shielded CSR

shielding parameter

$$\eta = \sqrt{2/3} \left(\frac{\pi \rho}{h} \right)^{3/2} \left(\frac{\sigma_s}{\rho} \right)$$

 ρ : bending radius h: full gap of two parallel plates σ_s : RMS bunch length

strong shielding $\rho = 25 \text{m}, h = 2 \text{cm}, \sigma_s = 900 \,\mu \,\text{m} \,(3\text{ps}) \rightarrow \eta = 7.2$ $\frac{P_{CSR}(\text{shielded})}{P_{CSR}(\text{free space})} = \frac{E_{loss}(\text{shielded})}{E_{loss}(\text{free space})} = 1.2 \times 10^{-5}$ $\frac{\Delta \epsilon (\text{shielded})}{\Delta \epsilon (\text{free space})} = \frac{\Delta E_{rms}(\text{shielded})}{\Delta E_{rms}(\text{free space})} = 0.029$ we define: $\Delta \epsilon = \sqrt{(\epsilon^2 - \epsilon_0^2)}$ weak shielding $\rho = 25 \text{m}, h = 2 \text{cm}, \sigma_s = 30 \,\mu \,\text{m} (100 \text{fs}) \rightarrow \eta = 0.24$ $\frac{P_{CSR}(\text{shielded})}{P_{CSR}(\text{free space})} = \frac{E_{loss}(\text{shielded})}{E_{loss}(\text{free space})} = 0.99$ $\frac{\Delta \epsilon (\text{shielded})}{\Delta \epsilon (\text{free space})} = \frac{\Delta E_{rms}(\text{shielded})}{\Delta E_{rms}(\text{free space})} = 0.99$

Effect of Transient CSR

Emittance Compensation by cell-to-cell Phase Matching

32nd ICFA Advanced Beam Dynamics WS on ERL, Mar. 19-23, 2005

ERL 2005

assuming steady-state Ez $\Delta E / E = \delta = \delta_0 + \kappa (s - s_0)$ We can track bunch slice motion by linear matrix.

Optimum injection to a 3-dipole merger

- A linear analysis of beam dynamic using R-matrix is extended to the study on CSR-induced emittance growth.
- Two kind of emittance compensation techniques, "envelope matching" and "cell-to-cell phase matching" are presented.
- Emittance growth by shielded CSR and transient CSR is also discussed.
- Emittance growth by longitudinal space charge force can be calculated in a similar way.
- Results from the R-matrix analysis are compared with particle simulations. Both results show good agreement.