Push-Pull FEL A New ERL Concept

Andrew Hutton JLab

Thomas Jefferson National Accelerator Facility

Drivers for a New Concept

- The ILC will use superconducting technology
 - Many components of the X-FEL at DESY are similar
- Most components of a superconducting accelerator are being, or will be, industrialized for the ILC and the X-FEL
 - Cryomodules
 - Injector
 - RF power sources

Concept - design an FEL based on "cheap" ILC components

- Modifies the design of the electron optics in favor of:
 - more cryomodules
 - more injectors
 - less beam transport

Thomas Jefferson National Accelerator Facility

New Concept - Electrons

- New concept uses two sets of superconducting cavities with two identical electron beams going in opposite directions
- Each set of superconducting cavities accelerates one electron beam and decelerates the other beam
 - The energy used to accelerate one beam is recovered and used for the other beam
- The difference between this proposal and other energyrecovery proposals is:
 - Each electron beam is accelerated by one structure and decelerated by another
 - This is energy exchange rather than energy recovery

Thomas Jefferson National Accelerator Facility

Concept - Light

- A further simplification can occur if the superconducting cavities produce sufficient energy
- The superconducting cavities can be contained within the optical resonator with the light pulses traversing them
- This arrangement leads to an extremely compact layout suitable for a university laboratory

Thomas Jefferson National Accelerator Facility

ollerson C

Conceptual Layout

The two cryomodules containing the superconducting cavities flank a wiggler that is used to produce coherent light

The addition of a pair of mirrors outboard of the cryomodules completes the free Electron Laser (FEL) optical cavity

On either end, there is a 10 MeV injector (gun + cryocavity) that can either be a copy of that used at the Jefferson Lab FEL or (better) an SRF gun

The electron beams are brought onto the acceleration axis by a separator magnet, which also serves to bend the spent beam to a dump

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

Cellerson Pab

Illustration of the Concept

Animation by Tom Oren

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

Jefferson Pab

Energy Balance

- RF energy in the cryomodules is recovered completely
- RF energy given to the beam by the injector is partially converted to FEL light and partially dissipated in the dump
 - The bend magnet needs to be carefully designed to transport electrons with a large (~50%) energy spread to the dump with extremely small losses
 - Better alternative is to do energy compression
- So the maximum FEL power that can be extracted is some fraction (up to about 50%) of the power in the injector

Thomas Jefferson National Accelerator Facility

Parameter Set

- An example of a parameter set has been calculated
 - Compared to design parameters of 10 kW JLab FEL
 - Design power output has been achieved, so parameters are within the state of the art
- The superconducting cavities are based on DESY X-FEL prototypes
 - Cryomodule contains eight 9-cell superconducting cavities operating at 23 MV/m for a total of 190 MV
 - The superconducting cavity in the injector is one of the same cavities operating at less than 10 MV/m.
 - Injection energy should be less than ~10 MV to avoid neutron activation of the dump.

homas Jefferson National Accelerator Facility

ILS DEPARTMENT O

lerson (

Parameter Example

Parameter	10 kW JLab FEL	Push-Pull FEL
	Design	Design
Maximum Beam Energy	80 – 210 MeV	200 MeV
Injector Beam Energy	10 MeV	10 MeV
Beam Current	10 mA	2 x 0.5 mA
Beam Power	800 – 2100 kW	2 x 100 kW
Non-Recovered Beam Power	100 kW	2 x 5 kW
RF Frequency	1500 MHz	1300 MHz
FEL Repetition Rate	3.9 – 125 MHz RF Frequency/(4 – 384)	5.078 MHz RF Frequency/256
Optical Cavity Length	32 meter	29.539 meter
Bunch Charge	135 pC @ 75 MHz	100 pC
Energy Spread after Wiggler	10% of 210 MeV	2.5% of 200 MeV
Energy Spread at Dump	~2% of 10 MeV	50% of 10 MeV
FEL Output Power	10 kW	> 1 kW

Thomas Jefferson National Accelerator Facility

Other Hardware

- RF Power source
 - The klystron being developed at Cornell for the ERL Light Source would be perfect for this application
 - Enough power for both injectors and both cryomodules
- RF Distribution and Low-Level RF control
 - The RF power distribution system and LLRF control adopted for ILC is perfect for this application
- Focusing
 - A quadrupole doublet at each Injector, a quadrupole doublet each side of the wiggler, and a quadrupole in the center of the cryomodules (as in the present X-FEL cryomodules) provide sufficient flexibility

Fhomas Jefferson National Accelerator Facility

Outstanding Questions

- Drive laser rep rate (5 MHz) is not easy
 - Lasers like high rep rate or low rep rate
 - A few MHz is currently difficult
 - The most stable solution uses a single drive laser with a splitter providing light to both guns
 - Needs precisely calibrated optical delay
 - Avoids problem of precisely synchronizing two separate lasers
 - Drive laser needs real work
- Complete a detailed design
 - No obvious problem areas other than the laser
 - Integrate bunch compression/energy compression

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

lerson (

Summary

- A new ERL concept is proposed
- Small footprint and few tunable parameters
 - Optimal for a university laboratory setting
- Uses components being developed for the ILC
 - Should become cheap and reliable

Design studies will continue

Awaiting a User with deep pockets!

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

lorsan

Parameter Example

Parameter	10 kW JLab FEL	Push-Pull FEL
	Design	Design
Maximum Beam Energy	80 – 210 MeV	200 MeV
Injector Beam Energy	10 MeV	10 MeV
Beam Current	10 mA	2 x 0.5 mA
Beam Power	800 – 2100 kW	2 x 100 kW
Non-Recovered Beam Power	100 kW	2 x 5 kW
RF Frequency	1500 MHz	1300 MHz
FEL Repetition Rate	3.9 – 125 MHz RF Frequency/(4 – 384)	5.078 MHz RF Frequency/256
Optical Cavity Length	32 meter	29.539 meter
Bunch Charge	135 pC @ 75 MHz	100 pC
Energy Spread after Wiggler	10% of 210 MeV	2.5% of 200 MeV
Energy Spread at Dump	~2% of 10 MeV	50% of 10 MeV
FEL Output Power	10 kW	> 1 kW

Thomas Jefferson National Accelerator Facility

