

Vladimir N. Litvinenko

Collider Accelerator Department, Brookhaven National Laboratory, Upton, NY, USA

Credits go to:

Ilan Ben-Zvi, Rama Calaga, Dmitry Kayran, Jörg Kewisch, Christoph Montag, Brett Parker, Vadim Ptitsyn, Thomas Roser, Bernd Surrow, Steven Tepikian, Dejan Trbojevic

eRHIC requires a very large tunability range for c.m. energies while maintaining very high luminosity up to 10³⁴ cm⁻² s⁻¹ per nucleon. The designs of this future polarized electron-hadron collider, eRHIC, based on a high current super-conducting energy-recovery linac (ERL) with energy of electrons up to 20 GeV, have a number of specific requirements on the ERL optics.

Three of the most distinctive features of this scheme are: <u>full spin transparency</u> of the ERL optics at all operational energies, the capability to support <u>up to four interaction points</u> and <u>preservation</u> of 20 GeV <u>e-beam parameters</u> in the arcs.

Considerations

- High current, very high energy (10-to-20+ GeV) ERL → Limitation on SR
- Polarization control at the IP → Polarization transparency of the lattice
- Potential light source and FEL application ⇒
 Preservation of emittance and energy spread
- IP optics ⇒ Support of (multiple) IP(s) with large disrupion parameter for the e-beam

Work is supported by DoE

eRHIC - electron-ion colliders

Linac-ring eRHIC

Daniel Anderson¹, <u>Ilan Ben-Zvi^{1,2,4}</u>, Rama Calaga^{1,4}, Xiangyun Chang^{1,4}, Manouchehr Farkhondeh³, Alexei Fedotov¹, Jörg Kewisch¹, <u>Vladimir Litvinenko</u>,^{1,4}, William Mackay¹, Christoph Montag¹, Thomas Roser¹, Vitaly Yakimenko²

- (1)Collider-Accelerator
- (2) Physics Departments of BNL,
- (3)Bates Lab, MIT,
- (4) Department of Physics and Astronomy, SUNY @ Stony Brook

http://www.agsrhichome.bnl.gov/eRHIC/

Goals and Targets

- This scheme meets or exceeds the requirements for the collider specified in the physics program for eRHIC [1]:
- **✓** Electron beams colliding with beams of protons or light and heavy nuclei
- ✓ Wide range of collision energies (E_{cm} /nucleon from 15 GeV to 100 GeV)
- ✓ High luminosity $L > 10^{33}$ cm⁻² s⁻¹ per nucleon
- **✓** Polarization of electron and proton spins
- **✓** Preferably, two interaction regions with dedicated detectors.

Center-of-mass energies for linac-ring eRHIC

Energy, GeV proton	26	50	100	250
electons c.m.				
1	10.20	14.14	20.00	31.62
2	14.42	20.00	28.28	44.72
5	22.80	31.62	44.72	70.71
10	32.25	44.72	63.25	100.00
20	45.61	63.25	89.44	141.42
30	55.86	77.46	109.54	173.21

Energy, GeV Au/u e c.m.	50	100
1	14.14	20.00
2	20.00	28.28
5	31.62	44.72
10	44.72	63.25
20	63.25	89.44
30	77.46	109.54

CM vs. Luminosity

eRHIC

- Variable beam energy
- P-U ion beams
- Light ion poalrization
- Large luminosity

ELIC

- Variable beam energy
- Light ion polarization
- Large luminosity

RHIC	eRHIC	Light source op tion
Ring circumference [m] Number of bunches Beam rep-rate [MHz] Protons: number of bunches Beam energy [GeV] Protons per bunch (max)	3834 360 28.15 360 26 - 250 2.0 <i>i</i> 10 ¹¹	Presently, RHIC operates for ~ 28 weeks/year The rest of the year
Normalized 96% emittance [µm] RMS Bunch length [m]	14.5 0.2	the RHIC ion rings do not work ^ Time for dedicated
Gold ions: number of bunches Beam energy [GeV/u] Ions per bunch (max)	360 50 - 100 2.0 į 10 ⁹	LS run
Normalized 96% emittance [µm] Electrons:	6	
Beam rep-rate [MHz] Beam energy [GeV] γ, Relativistic factor	28.15 2 Š 20 3.9 10 ³ - 3.9 10	703.75 4
RMS normalized emittance [μm] Beam emittance @ 20 GeV [□] Full transverse coherence λ [□] photon energy [keV]	5- 50 1.25-12.5	0.9 0.18 1.13 11
RMS Bunch length [psec] Electrons per bunch Charge per bunch [nC] Average e-beam current [A]	30 0.1 - 1.0 į 10 1.6 -16 0.45	0.03 - 3 0.7 0.5
On A Through Control		

RHIC

Spin motion

Bargman, Mitchel, Telegdi equation

$$\frac{d\hat{s}}{dt} = \frac{e}{mc}\hat{s} \times \left[\left(\frac{g}{2} - 1 + \frac{1}{\gamma} \right) \vec{B} - \frac{\gamma}{\gamma + 1} \left(\frac{g}{2} - 1 \right) \hat{\beta} \left(\hat{\beta} \cdot \vec{B} \right) - \left(\frac{g}{2} - \frac{\gamma}{\gamma + 1} \right) \vec{\beta} \times \vec{E} \right]$$

 $a = g/2 - 1 = 1.1596521884 \cdot 10^{-3}$

$$\hat{\mu} = \frac{g}{2} \frac{e}{m_o} \hat{s} = (1+a) \frac{e}{m_o} \hat{s};$$
 $v_{spin} = a \cdot \gamma = \frac{E_e}{0.44065[GeV]}$

$$\Delta \varphi = a \cdot \gamma \theta$$

in a θ -arc

For *n*-passes in ERL

$$\varphi = \pi a \cdot \left(\gamma_i (2n - 1) + n(\Delta \gamma_1 \cdot n + \Delta \gamma_2 (n - 1)) \right)$$

Energy independent spin control - solved

TBBU for eRHIC?

- The circumference of RHIC provides $T_o \sim 13 \mu s$
- The BNL cavity HOM Q's is 10^2 to 10^4
- The typical frequencies are >1 GHz
- $\tau = Q/\omega \sim 10^{-8}$ to 10^{-6} seconds,

or attenuation between e²⁰ to e²⁰⁰⁰

Interaction region design requirements

- Head-on collisions due to long ion bunches
- Equal beam sizes at interaction point to avoid emittance degradation
- \pm 3m machine-element free region for detector installation
- Sufficient beam separation at entrance of first ion septum quadrupoles at \pm 5m

$$(12 \sigma_e + 12 \sigma_i + d_{septum})$$

Accommodation of synchrotron radiation fan

Integration with IP

 $E_{x} = 12\sigma_{p,x} + 5\sigma_{e,x} + d$ septum= $12i \cdot 0.93$ mm + $5i \cdot 0.25$ mm + 10mm = 22.4mm.

- Round-beam collision geometry to maximize luminosity
- Smaller e-beam emittance resulting in 10-fold smaller aperture requirements for the electron beam*
- Possibility of moving the focusing quadrupoles for the e-beam outside the detector and the IP region, while leaving the dipoles used for separating the beam
- Possibility of further reducing the background of synchrotron radiation

Detector-integrated Dipole (DID) for beam separation

Interaction region (top view) with 12σ beam envelopes and synchrotron radiation fan

Detector Design --- HERA like...

© from Abhay Deshpande's talk at at EIC2004

Nearest ring quadrupole: 1m ring-ring

5 m - linac-ring

Where do electrons and quarks go?

IP issues

$$D = \frac{Z_h N_h}{\gamma_e} \frac{r_e}{\sigma_{r(h)}^2} \sigma_{s(h)}$$

For the linac-ring collider, the beam-beam effect on the electron beam is better described not by a tune shift but by a disruption parameter, i.e. additional betatron phase advance

Does e-beam survives?

YES

Round 10 GeV electron beam from ERL with initial transverse RMS emittance of 3 nm·rad passes through the IP with the disruption

parameter 3.61 (tune shift $\xi_e = 0.6$). Poincare plots for e-beam distribution before (red) and after (blue) the IP. After removing the r-r' correlations, the emittance growth is only 11%.

Matching the beam's size with the ion beam and a negative α =-1 at z=-0.3m. The e-beam's size does not shrink below the matched value and the hadron tune shift does not exceed $\xi_h = 0.005$

Luminosity is determined $L = f_c \frac{N_e N_h}{4 - R^* c}$ by the hadron beam!

$$L = f_c \frac{N_e N_h}{4 \pi \beta_h^* \varepsilon_h}$$

$$\beta_e^* \varepsilon_e = \beta_h^* \varepsilon_h$$

Round beams
$$\beta_e^* \varepsilon_e = \beta_h^* \varepsilon_h$$

$$L = \gamma_h \cdot (f_c \cdot N_h) \cdot \frac{\xi_h \cdot Z_h}{\beta_h^* \cdot r_h}$$

$$\xi_h = \frac{N_e}{\gamma_h} \frac{r_h}{4\pi Z \varepsilon_h} = 0.005$$

Luminosity	Protons	Protons	Protons	Protons
10 ³³ cm ⁻² sec ⁻¹	26 GeV	50 GeV	100 GeV	250 GeV
Electrons 5(2)-10 GeV	0.201	0.395	0.791	1.98

Luminosity (per nucleus) 10^{31} cm ⁻² sec ⁻¹	Au 50 GeV/u	Au 100 GeV/u
Electrons 5(2)-10 GeV	1.02	2.05

Dedicate eRHIC mode with 250 GeV p or 100 GeV/u Au

$$\xi_h \to 0.024 \quad \Leftrightarrow \quad L_{pe} \to 1 \cdot 10^{34}$$

eRHIC - spontaneous radiation

Very few facts

Energy	20	10	GeV
Βρ	666.67	333.33	kGs m
Loss per turn	35.40	2.21	MeV
Power	17.70	1.11	MW
λc (reg. bend)	0.28	2.24	
E ph critical			
(reg. bend)	44.35	5.54	KeV
λc (2T bend)	0.02	0.09	
E ph c (2T bend)	532 ←	133.05	KeV
λc (10 T bend)	0.0047	0.0186	
E ph c (10T bend)	2661 ←	665.24	KeV
Wiggler K=1			
Period	1	1	cm
λο	0.049	0.196	
E ph	253.3	63.3	KeV
Wiggler K=2			
Period	4	4	cm
λο	0.392	1.567	

New for High Flux Nuclear Physics

Beam parameters

Energy	20	GeV		Energy	10	GeV	
γ	3.91E+04			γ	1.96E+04		
Circumference	3834	m		Circumference	3834.00	m	
R, average	610.20	m		R, average	610.20	m	
% fill	65.55%			% fill	65.55%		
R magnets	400.00	m		R magnets	400.00	m	
В	1.67	kGs		В	0.83	kGs	
N TBA cells	150.00			N cells	150.00		
$\epsilon_{ m norm}$	9.50E-07	m rad		ε norm	9.50E-07	m rad	
8	0.243	\square rad		ε	0.485		
Bunchlength	from 0.1 to 2	psec		Bunchlength	from 0.1 to 2	psec	
Damping time	1.45E-02	sec		Damping time	1.16E-01	sec	
Revolution time	1.28E-05	sec		Revolution time	1.28E-05	sec	
$\Delta \varepsilon$ (TBA)	0.016	\Box rad	<i>6.70%</i>	$\Delta \varepsilon$ (TBA)	0.001		0.10%
8	0.259	\square rad		ε	0.486		
RMS energy spread	2.54E-05			RMS energy spread	4.49E-06		

Single pass Ångstrom-class FELs at eRHIC

Average lasing power is a problem!

(a) 1Å (12 keV)

It is from 0.6 MW

to 1.3 MW

Energy, GeV	20		15		10	
Wavelength, Å	0.5	1	0.87	1.8	2	4
Bunch length, psec	0.2	0.2	0.27	0.27	0.4	0.4
Peak Current, kA	5	5	3.75	3.75	2.5	2.5
Wiggler period, cm	2.5	3	2.5	3	2.5	3
SASE gain length, m	7.5	4.3	5.5	3.3	3.7	2.4
SASE Saturation length, m	100	60	76	47	51	34
Saturation power, GW	7.7	19	6.4	14	4.5	9
DOK, gain length, m	3.5	1.4	1.5	.65	.51	.25
DOK, saturation length, m	47	19	21	9	7	3.5

Brightness Average

Peak

Polarized photon source - causes loss of few µA

•Wavelength [nm]

Polarization of photons

Polarization of electrons

•IC laser power [kW]

Mode of operation

300 - 900

circular (left/right)

longitudinal, ~90%

50

CW

Wavelength, nm	300	900
γ-rays, Peak energy, GeV	11.17	5.93
Flux, γ-rays/sec	$2.13 \cdot 10^{13}$	4.26 ·10 ¹³
Power of γ-ray beam, kW	2.5	2.7

Conclusions

- Optics solutions for ERL-based eRHIC do require solid but conventional technologies → No cliff-hangers are expected
- ERL-based eRHIC has natural solution for Polarization transparency of the lattice and polarization control at the IP → No surprises
- ERL-based eRHIC has fantastic potential as light, FEL and γ-ray source and FEL application → Preservation of emittance and energy spread is well understood
- IP optics has challenges only for hadrons ⇒ Support of multiple IP(s) looks possible
- Additional aspects of the optics: circumference adjustments, low energy arcs, switch-yard.

