

ERL Optics Considerations for ELIC

A. Bogacz, M. Cornacchia, J. Delayen, Ya. Derbenev, J. Grames, A. Hutton, R. Kazimi, G. Krafft, R. Li, L. Merminga, M. Poelker, E. Pozdeyev, B. Yunn, Y. Zhang

Center for Advanced Studies of Accelerators

Jefferson Lab

ERL2005 Workshop Jefferson Lab March 19 - 23, 2005

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

Nuclear Physics Requirements

- The features of the facility necessary to address these issues:
 - Center-of-mass energy between 20 GeV and 65 GeV

with energy asymmetry of ~10, which yields

 $E_e \sim 3 \text{ GeV}$ on $E_i \sim 30 \text{ GeV}$ up to $E_e \sim 7 \text{ GeV}$ on $E_i \sim 150 \text{ GeV}$

- CW Luminosity from 10³³ to 10³⁵ cm⁻² sec⁻¹
- Longitudinal polarization of both beams in the interaction region ≥ 50% –80% required for the study of generalized parton distributions and transversity
- Transverse polarization of ions extremely desirable
- Spin-flip of both beams extremely desirable

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

ellerson 4

ELIC Layout

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

Accelerator Transport

6-D emittance preservation and phase space management during acceleration and energy recovery

- I. Special feature of ELIC: ERL combined with Circulator Ring (CR)
 - Various schemes of loading bunches into CR -> affect ERL physics
- II. Transverse matching
- III. Longitudinal matching
- IV. High current stability in ERL -> adequate damping of longitudinal and transverse HOMs (CR!)
- V. Emittance growth at collision points (up to 4) -> effect on deceleration and energy recovery
- VI. Match spin after transport in linac
 - Wien filter + solenoid before linac
 - Two solenoid Siberian snakes in arcs for long. spin in 4 IP
- VII. Synchrotron radiation power in CR -> energy difference between accelerating and decelerating passes
- VIII. Coherent Synchrotron Radiation

Telferson Pab

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

Circulator Ring

Different filling patterns are being explored (Derbenev, Hutton, Litvinenko)

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

efferson Pal

Transverse Matching

Requirement:

 Electron-Ion Colliders: High energy (GeV scale) demonstration of energy recovery. A significant extrapolation from FEL ERL paradigm (~ 100 MeV).

The challenge:

 Demonstrate sufficient operational control of <u>two</u> <u>coupled beams</u> of <u>substantially different energies</u> in a <u>common transport channel</u>, in the presence of steering, focusing errors.

> Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

ellerson G

CEBAF-Energy Recovery Experiment

CEBAF-ER is a 1 GeV demonstration of energy recovery in CEBAF – 40 cryomodules.

- Quantify evolution of transverse phase space during acceleration and energy recovery.
- Test the dynamic range of system: large ratio of final-to-injected (E_{fin}/E_{inj}) beam energies

Larger E_{fin}/E_{inj} ratio higher ERL efficiency!

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

CEBAF-ER Experiment

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

CEBAF-ER Preliminary Results

- Demonstrated a significant operational extension of energy recovery to high energy (1 GeV), through a large (~1 km circumference), superconducting RF system (40 cryomodules).
- Demonstrated feasibility of energy recovery with ratio of final-to-injected energy up to 50:1 (1GeV[≠]20 MeV).
- No significant emittance dilution was measured as a result of the energy recovery process. No surprises were uncovered.

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

Longitudinal Matching ?

- Energy spread ~10⁻³ at ~ 10 GeV
 - -> $\delta E/E \sim 100\%$ at 10 MeV

Nonlinear distortions in phase space must be corrected for proper energy recovery?

Thomas Jefferson National Accelerator Facility

Lia Merminga EIC2004 3/15/2004

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

Measurements Performed

- In an effort to gain a quantitative understanding of the 6D phase space, the following measurements were taken:
 - Measuring the transverse emittance of the beam in the injector, in each Arc and immediately before being sent to the dump
 - To characterize the longitudinal phase space, the momentum spread was measured in each Arc
- Measure energy recovered beam profiles with a large dynamic range as a way to characterize halo
- Measured the RF's response to energy recovery

These measurements were performed with $E_{ini} = 55 \text{ MeV}$ and 20 MeV

(*i.e.* exercise final-to-injector energy ratios (E_{final} / E_{inj}) of 20:1 and 50:1) A. Bogacz, et al., "CEBAF Energy Recovery Experiment," Proc. PAC 2003

> Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

Cellerson G

CEBAF-ER Preliminary Results

- Demonstrated the feasibility of energy recovering a high energy (1 GeV) beam through a large (~1 km circumference), superconducting (39 cryomodules) machine.
- 80 μA of CW beam accelerated to 1055 MeV and energy recovered at 55 MeV.
- 1 µA of CW beam, accelerated to 1020 MeV and energy recovered at 20 MeV, was steered to the ER dump -> Performance limit at low injection energy.
- Tested the dynamic range on system performance by demonstrating high final-to-injector energy ratios (E_{final}/E_{ini}) of 20:1 and 50:1.

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

ellerson C

CEBAF with Energy Recovery

Install 50 CEBAF Upgrade (7-cell) cryomodules at gradient up to 23 MV/m

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

ELIC Parameters at different CM energies

Parameter	Unit	Value	Value	Value
Beam energy	GeV	150/7	100/5	30/3
Cooling beam energy	MeV	75	50	15
Bunch collision rate	GHz	1.5		
Number of particles/bunch	10 ¹⁰	.4/1.0	.4/1.1	.12/1.7
Beam current	Α	1/2.4	1/2.7	.3/4.1
Cooling beam current	Α	2	2	.6
Energy spread, rms	10 ⁻⁴	3		
Bunch length, rms	mm	5		
Beta-star	mm	5		
Horizontal emittance, norm	μm	1/100	.7/70	.2/43
Vertical emittance, norm	μm	.04/4	.06/6	.2/43
Number of interaction points		4		
Beam-beam tune shift (vertical) per IP		.01/.086	<mark>.01</mark> /.073	. <mark>01</mark> /.007
Space charge tune shift in p-beam		.015	.03	.06
Luminosity per IP [*] , 10 ³⁴	$cm^{-2} s^{-1}$	7.7	5.6	.8
Core & luminosity IBS lifetime	h	24	24	> 24
Lifetime due to background scattering	h	200	> 200	> 200

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

efferson Pab