

Optics considerations for ERL test facilities

Bruno Muratori
ASTeC Daresbury Laboratory

(M. Bowler, C. Gerth, F. Hannon, H. Owen, B. Shepherd, S. Smith, N. Thompson, E. Wooldridge, N. Wyles)

Overview

- Optics Layout strategy for ERLP
 - MAD8
- Space Charge for the ERLP
 - Analytical
 - ASTRA
 - GPT
- Start to End (S2E) models for the ERLP
 - MAD8
 - ELEGANT
 - GENESIS
- Beam Breakup for the ERLP
 - BI

ERLP Building Layout

Energy Recovery Linac Prototype

Parameters for ERLP

- 4 ps long bunches, 80 pC
- 8.35 MeV Injection line (TL2) between 10 m and 15 m
- 35 MeV Beam Transfer System (BTS)
- Initial emittance (norm) between 1 mm mrad and 2 mm mrad
- Transverse beam size ~ 1-16 mm

Beta Functions for ERLP

Dispersion for the ERLP

Injection & Extraction Chicanes (from JLab with thanks)

Ali

Compression Chicane (from JLab with thanks)

JLab Wiggler

JLab Wiggler – Testing

JLab Wiggler Model – Beta Functions

 $\frac{1}{F_x} = -\frac{4I(s)}{(\beta \gamma)^3 I_0} \frac{L}{a(a+b)}$

ASTRA & Drifts - Analytical Approach

- Horizontal focusing given by (equivalent for vertical)
- Sigma matrix transformation

Sigma matrix transformation
$$J = \begin{pmatrix} 1 & 0 \\ -\frac{1}{F_x} & 1 \end{pmatrix} \begin{pmatrix} \alpha_{x_0} & \beta_{x_0} \\ -\gamma_{x_0} & -\alpha_{x_0} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{1}{F_x} & 1 \end{pmatrix}$$
$$= \begin{pmatrix} \alpha_{x_0} + \frac{\beta_{x_0}}{F_x} & \beta_{x_0} \\ -\gamma_{x_0} - \frac{2\alpha_{x_0}}{F_x} - \frac{\beta_{x_0}}{F_x^2} & -\alpha_{x_0} - \frac{\beta_{x_0}}{F_x} \end{pmatrix}$$

New emittance

$$\epsilon_x = \epsilon_{x_0} \sqrt{1 + \beta_{x_0}^2 \left[\left\langle \frac{1}{F_x^2} \right\rangle - \left\langle \frac{1}{F_x} \right\rangle^2 \right]}$$

Gaussian bunch (in s) $\left\langle \frac{1}{F_x^2} \right\rangle - \left\langle \frac{1}{F_x} \right\rangle^2 = \left(\frac{1}{F_x} \right)_{\text{max}}^2 \left(\frac{1}{\sqrt{3}} - \frac{1}{2} \right)$ $I(s) = I_{\text{max}} \exp\left(-\frac{s^2}{2\sigma^2}\right)$

Results & Comparisons for ASTRA & Drifts – 1 mm mrad

ASTRA & Quadrupoles for TL2 – Long model

ASTRA & Quadrupoles for TL2 – Short model

GPT & Quadrupoles for TL2 – Short model

ASTRA & Quadrupoles for TL2 – Short model

- ASTRA distribution from gun and booster (CG & FH)
- Emittance outside transverse plane
- Gaussian good approximation for emittance growth estimate

GPT

- All results so far in good agreement
- Different algorithms also agree
- Emittance increase appears to be comparable to the analytical estimate in all cases considered
- Dispersion may be left out for a rough estimate
- Next: Include bends ...

GPT & TL2 with dipoles (short model) – first results

GPT & Quadrupoles for TL2 – Short model

Problem: Fringe Fields, Solution: Enge Function

Transfer Line 2 / Linac

- Lattice matching with MAD8
 - keep Twiss parameters at reasonable values (e.g. β < 50m)
 - Dispersion free after injection/extraction bends and arcs
 - 1st arc: isochronous
 - 2^{nd} arc: $R_{56} = -R_{56}$ bunch compressor
 - Only exact matching point in transverse and longitudinal phase space is at the entrance of the FEL
- Tracking with elegant (TL2: E = 8.35MeV, I = 15m, 4 dipoles, 12 quads)
 Space charge effects ignored

Start to End Model

Sextupole Linearisation

- Sextupoles in the outward arc help to achieve the shortest possible bunch length
- Can actually make bunch length too short for lasing! (in theory)
- Adjustable in real machine to optimise lasing properties
- In practice we are likely to see disruptive effects not apparent in the model

Beam Breakup and the ERLP

- Initial calculations & running the code BI (E. Wooldridge)
- Assume TESLA HOM's
- Threshold current 5.12 mA
- Beam Breakup not a problem for ERLP at this low current

Conclusions

- Optics with no real problems so far
- Good agreement between ASTRA and GPT and analytical result for drifts (provided flow is laminar)
- All to be redone with dipoles correctly modelled
- Can analytical estimate be used as an upper bound in all cases? or at least a reasonable 'rough guess'?
- Try to take into account space charge by rematching at several stages in injector line. However, this cannot take into account transverse & longitudinal coupling
- BBU not a problem
- Start to end simulations only real answer to see if bunch is acceptable for lasing at FEL (to be redone with dipoles)

Daresbury Laboratory - Tower Building

Internal shielding complete

External shielding in construction

Inside Control Room

Assembly Building

Class 100 (ISO 5) Clean Room

Magnet Test Room

Control Room

TRACE-3D

- Include z component for E field
- Update continuously (no averaging)
- Would be nice to take into account longitudinal dispersion
- 1) Match transfer matrix cpt.
 R16 (dispersion) to zero
- 2) Match R26 (angular dispersion) to zero
- 3) Match R15 (bunch spatial width) to zero
- 4) Match R25 (bunch angular spread) to zero
- Usually only first two done (e.g. in MAD8)

$$E_x = \frac{1}{4\pi\varepsilon_0} \frac{3I\lambda}{c\gamma^2} \frac{\left(1-f\right)}{r_x \left(r_x + r_y\right) r_z} x \quad ,$$

$$E_y = \frac{1}{4\pi\varepsilon_0} \frac{3I\lambda}{c\gamma^2} \frac{(1-f)}{r_y (r_x + r_y) r_z} y \ ,$$

$$E_z = \frac{1}{4\pi\varepsilon_0} \frac{3I\lambda}{c} \frac{f}{r_x r_y r_z} z \quad ,$$

$$p \equiv \frac{\gamma r_z}{\sqrt{r_x r_y}}$$

$$f(p) = \begin{cases} \frac{1}{1-p^2} - \frac{p}{(1-p)^{3/2}} \cos^{-1} p & \text{if } p < 1\\ \frac{p \cosh^{-1} p}{(p^2-1)^{3/2}} - \frac{1}{(p^2-1)} & \text{if } p > 1\\ \frac{1}{3} & \text{if } p = 1 \end{cases}$$