Longitudinal phase space manipulation at high and medium energy

Generic energy recovery linac:

■ Injector ⇒ main linac (accelerate beam) ⇒ NI1: prepare beam for ID requirement ⇒ NI2: re-inject beam into linac on decelerating phase

Linac to ID (linear theory)

$$\sigma_{z,f} = \sqrt{(1 + \kappa R_{56})^2 \sigma_{z,i}^2 + R_{56}^2 \sigma_{\delta,i}^2 E_0^2 / E_1^2}, \sigma_{\delta,f} = \sqrt{\kappa^2 \sigma_{z,i}^2 + \sigma_{\delta,i}^2 E_0^2 / E_1^2}$$

Min bunch length getting very small at high energy!

Linac to ID (nonlinear effects)

Bunch compressor

$$z_{f} = z_{i} + R_{56}\delta_{i} + T_{566}\delta_{i}^{2}$$

Final bunch length is minimized if

$$0 = z_i (1 + \kappa R_{56}) + z_i^2 (\mu R_{56} + \kappa^2 T_{566})$$

Limit achievable minimum Bunch length 2nd order momentum compaction

Higher order effects: pulse control

- Correction with higher harmonic rf-field provide two independent knobs (κ and μ parameters to minimize σ_z given R₅₆ and T₅₆₆),
 - sextupoles to some extent also provide these knobs

Higher order effects: pulse control

Higher order effects: 3.9 HZ harmonic cavity

Higher order effects: pulse control

Sextupoles, to some extent, also provide these knobs
 But coupling between longitudinal and transverse phase space is introduced

Effect of FEL interaction

Increase in uncorrelated momentum spread

Measurement at JLAB IR-DEMO

Effect of FEL interaction

Change in time-of-flight?

Energy recovery

Recirculation optics

 match longitudinal phase space to slope of decelerating linac
 Need again to match slope and curvature

- Full recirculation loop is generally isochronous,
- Possible to use a dedicated cavity operated at zero crossing in the loop

Energy recovery

Recirculation optics ⇒ match longitudinal phase

Example JLab IR-demo

comments

(M. Huening, et al FEL'2000)

Parasitic time of flight measurement using EO imaging?

Femtosecond x-ray stopwatch

A. Cavalieri, D. Fritz, S. Lee, P. Bucksbaum, D. Reis and SPPS Collaboration

Single-Shot Electron Beam Timing Jitter (20 timing measurement shots)

Strong Correlation between measured Electron Beam and X-ray beam timing

0.2

0.4