Studies of the regenerative BBU at the JLab FEL Upgrade

Eduard Pozdeyev, Chris Tennant

Outline

- Theoretical model of BBU (not rigorous but simple and useful)
- Measurement techniques and results
- Comparison of the experimental data to simulations and the analytical formula
- Summary and plans

efferson (

Energy transfer from the beam to HOM

BBU threshold equation

.

The threshold corresponds to equilibrium between deposited and dissipated power.

At the equilibrium, the stored HOM energy does not change (dU/dt=0)

The formula yields two regions: $m_{12}sin(\omega T_r) < 0 - unstable$ $m_{12}sin(\omega T_r) > 0 - "pseudo"$ -stable

(Thorough analysis by J. Bisognano, G. Krafft, S. Laubach, 1987 Hoffstaetter, Bazarov, 2004) Jefferson Lab

$$\dot{U}_{cav} = \dot{U}_{beam} - P_c = \left\langle \Delta U_{in} + \Delta U_{out} \right\rangle \cdot f_b - P_c$$

$$P_c = \frac{V_a^2}{(\omega/c)^2 a^2 \left(\frac{R}{Q}\right) Q_L}$$

$$\frac{dU}{dt} = -\frac{V_a^2}{a^2} \left(I_b \frac{m_{12}}{V_b} \frac{c}{\omega} \frac{\sin(\omega T_r)}{2} + \frac{1}{(\omega/c)^2 \left(\frac{R}{Q}\right) Q_L} \right)$$

$$I_{th} = -\frac{2V_b}{(\omega/c)\left(\frac{R}{Q}\right)Q_L m_{12}\sin(\omega T_r)}$$

Single mode, two-pass recirculator, arbitrary m(4x4), arbitrary mode polarization α

$$x \rightarrow \vec{d} \cdot \vec{n} = x \cos(\alpha) + y \sin(\alpha)$$

$$I_{th} = -\frac{2V_b}{(\omega/c)\left(\frac{R}{Q}\right)Q_L m^* \sin(\omega T_r)}$$

$$m^* = m_{12}\cos^2(\alpha) + (m_{14} + m_{32})\sin(\alpha)\cos(\alpha) + m_{34}\sin^2(\alpha)$$

(Pozdeyev, 2004)

Two dimensional case (degenerate modes)

Two degenerate dipole modes polarized in x and y.

$$M(4 \times 4) = \begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix}$$

for $M_{14} M_{32} > 0$

 $M_{14} M_{32} < 0$

(B. Yunn, 2005)

Splitting degenerate modes for effective BBU suppression by 90°-rotation/reflection

Frequency separation can be estimated using formula for a square cavity

$$\frac{\delta f}{f} = \frac{6}{5} \frac{\delta d}{d}$$

where $\pm \delta d$ is the variation of the cavity transverse size

(efferson C

Voltage evolution above and below I_{th}

$$\frac{V_a^2}{a^2} = \omega \left(\frac{\omega}{c}\right)^2 \left(\frac{R}{Q}\right) U$$

$$\frac{dU}{U} = -dt \frac{\omega}{Q_L} \frac{I_{th} - I}{I_{th}}$$

$$U = U_0 \exp\left(-t \frac{\omega}{Q_L} \frac{I_{th} - I_b}{I_{th}}\right) \qquad V = V_0 \exp\left(-t \frac{\omega}{2Q_L} \frac{I_{th} - I_b}{I_{th}}\right)$$

The system HOM+beam can be described by the effective quality factor:

$$Q_{eff} = Q_L \frac{I_{th}}{I_{th} - I}$$

Jefferson C

$$\tau_{e\!f\!f} = \tau_0 \frac{I_{th}}{I_{th} - I}$$

Thomas Jefferson National Accelerator Facility

 \Leftrightarrow

JLab FEL Upgrade

Energy(MeV)	80-200	Covition of Zono 3 have higher				
Charge per bunch (pC)	135	accel. gradient than Zone 2,4.				
Bunch rep.rate (MHz)	4-75	The Q of dipole HOMs is also				
Average current (mA)	10	BBU limit.				
Laser power (kW)	10					
Super conducting rf linac Beam dump IR wiggler						

Questions we tried to answer

- How well do the model and simulations describe the BBU and the beam behavior
- Can we experimentally measure (predict) the BBU threshold doing measurements below the threshold
- Can we suppress BBU (C. Tennant, next talk)

Direct observation of the BBU threshold

Schottky diodes where used to measure HOM power from the HOM ports.

(K. Jordan)

Thomas Jefferson National Accelerator Facility

Jefferson Par

Direct observation of the BBU threshold

HOM voltage growth rate measurements

What about other HOMs?

I=5mA

Cav. 3, F=1786.206 BTF measurements: the HOM is very far from the threshold (BTF-predicted I_{th} =34 mA)

Cav. 8, F=1881.481 BTF measurements inconclusive. Cross-talk prevented us from taking accurate BTF data.

We are not sure what causes this voltage rise

Beam Transfer Function (BTF) measurements

one can predict the BBU threshold below the threshold.

Port-to-port BTF: +'s: 1) stronger signal 2) no need for RF amplifier 3) no need for kicker -'s: cross-talk can complicate Q-measurements

NWA

 (S_{21})

Beam Transfer Function (BTF) measurements

Projected threshold current is 2.86 mA

The "pseudo"-stable region $(m_{12}sin(\omega T_r)>0)$

For $m_{12}sin(\omega T_r)>0$, BBU still can happen at very high currents (~10A). (J. Bisognano, G. Krafft, S. Laubach (1987), Hoffstaetter, Bazarov (2004))

> Thomas Jefferson National Accelerator Facility

Jefferson (

Comparison to simulations and the threshold formula

May 2004: TDBBU, MATBBU, ERLBBU simulations: Simulated threshold 2.7 mA, Measured threshold 2.5 mA

Dave Douglas' optics file (Nov.2004) with "All Save" quadrupole values

			Formula	Measured
Cavity	f _{hom} (mA)	Orientation	I _{th} (mA)	l _{th} (mA)
7	2106	Y	2.5	2.7
7	2116.58	Y	-3.1	-3.1
4	2114.15	Х	-27	-9.5
3	1786.2	Х	156	34

(C. Tennant)

- Jefferson Lab -

Conclusions and Plans

- The dipole HOM in Zone 3 Cav. 7 with F=2106 had the lowest BBU threshold in the machine (2.7 mA).
- Behavior of the HOM+beam system can be described by the effective quality factor, given by:

$$Q_{eff} = Q_L \frac{I_{th}}{I_{th} - I}$$

(This formula can fail for extremely high currents or/and larger accelerators)

 Measuring the Q as a function of current (BTF) below the threshold and measuring the rise time above the threshold, we were able to accurately predict the threshold.

Conclusions and Plans

- Programs TDBBU, MATBBU, and ERLBBU accurately predicted the threshold in the JLab FEL Upgrade. More work is needed for accurate comparison of the experimental data to simulations.
- Measurement of HOM polarization and betatron coupling is required for accurate comparison of the experimental data with simulations and theory. Interesting modes are Cav.7 f=2106, Cav.7 f=2116.584

Acknowledgements

- L. Merminga, G. Krafft, B. Yunn (JLab)
- S. Benson , D. Douglas, K. Jordan, G. Neil, FEL team (JLab)
- Haipeng Wang (JLab)
- Curt Hovater (JLab)
- Todd Smith (Stanford)
- I. Bazarov, G. Hoffstaetter, C. Sinclair (Cornell)
- Stefan Simrock (DESY)

Single-pass ERL

