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RF focusing
< TWO sources:
f#+Entrance kick (first ord
# Alternating gradient (sec er)
+Studies at UCLA, INFN-Milano, DESY in
1990’s (originates in 60°s)
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¢ Radial forces (relativistic limit)
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Average second ord dial force

+"Ponderomotive” force )Y
averaging over small oscillations
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Equation of motio olution

<-Relativistic limit

<+ Solution
x(z) =xocos[o<z)]+ X 77(8 ) %sin((p) sin




Matrix in cavityv.interior

¢ Assume integer number S, W/o
transients at ends

coS[O<Z)] \/E%Sin(@ Sin[a(Z)]
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Edge matti

< First order transient (care ubtract
oscillatory component of motion)




Full matrix

M = M GXM ach ent
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Adiabatic damping (relativistic approx.):

detM = Vi
Yy

Note: H. Weise has decomposed this matrix into focusing
and adiabatic damping components:
1 0

Moy =|0 1o
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Experimental measurement

UCLA Saturn%6
¢ Photoinjector dark current beam source

< PWT high gradient linac matrix

measured
£ Nontrivial higher spatial harmmonic content
¢ Energy and phase dependence noted

<Determinant of matrix checked




FIG. 1. Layout of the UCLA photoinjector with a (a) 1.5 cell rf

oun, (b) focusing and bucking solenoid, (¢) mirror box, steering
magnets (d) K1 and (¢) K2, (f) phosphor screen P1, (g) PWT linac.
(h) phosphor screen P2, (1) quadrupole triplet, and (j) phosphor

screen P3.




Matrix element de

& Two kickers, calibrated

% Two profile monitors

¢ Variation of phase (revert to )
©Variation of amplitude
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(a)-(d): K1P2, K1P3, K2P2, K2P3
Solid line is theory, dash w/o focusing
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Matrix determine
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¢ Check on measurement and physics
¢ Solid line is theory

% Dashed is overall fit of data, inverted
% Difficult, but not bad




Conclusions

¢ Good first test of matrix tranSpore
& Agreement obtained within experimental
¢ Critical for high gradient SW linacs

¢ Also is the basis of invariant envelope theory in
emittance compensation so...

¢ Better measurements with good beam desirable
for LC, ERL community

4 Look for

# Non-linear (higher order mod. Bessel function
dependences)

£ Dynamics in emittance compensation and BBU




