

A Brief Outline Of Proposed ERLs

Carl Beard ASTeC Daresbury Laboratory

Background

- Superconducting RF allows the possibility of Energy Recovery with **minimal** wall losses.
 - Projects to accelerate and then decelerate beams with a second linac were discussed.
- Several demonstrations of Energy Recovery
 - Stanford University. SCA/FEL
 - Los Alamos National laboratories FEL
 - TFNAF CEBAF Front End
- With the exception of the injector, the required rf power is nearly **independent** of beam current
 - Increased overall system efficiency
 - Reduced rf capital cost
- The electron beam power to be disposed of at beam dumps is reduced by ratio of ${\rm E}_{\rm max}/_{\rm Einj}$
 - Thermal design of beam dumps is simplified
 - If the beam is dumped below the neutron production threshold, then the induced radioactivity (shielding problem) will be reduced.
- Efficiency of storage rings with beam properties of linacs

Stanford University – SCA- FEL

- Same cell energy recovery was first demonstrated in the SCA/FEL at the Stanford High Energy Physics Laboratory (HEPL) in July 1986
- Beam was injected at 5 MeV into a 50 MeV, 1.3 GHz SC linac
- Through recirculation HEPL doubled its energy
- All energy was recovered; I ~ 150 μ A

ASTeC

JLAB CEBAF – ER and IRFEL Demo

- Energy recovery up to 50 MeV has been achieved at the IR FEL.
- Energy recovered up to 5mA at 145 MeV, up to 9mA at 88 MeV
- Achieved 10 kW IR power

Special installation of a $\lambda_{\text{RF}}/2$ path length delay

ASTeC

ASTeC

Cornel ERL and Prototype

LBNL – LUX

ASTeC

BNL ERL

KEK ERL & Prototype

40

ASTeC

JAERI-FEL

Beam Energy17 MeVInjection Energy2.5 MeVBeam Current40 mA E_{acc} > 5 MV/m at $Q_0 2x10^9$

5-Cell 500 MHz Superconducting RF Cavities ASTeC

Single Cell 500 MHz Superconducting RF Cavities

BINP Accelerator-Recuperator / MARS

Beam Energy Injection Energy Beam Current Linac Frequency

6 GeV 410 MeV 1 mA 181 MHz

Daresbury Laboratory ERL Prototype and 4GLS

S-DALINAC

ASTeC

BESSY FEL & X-FEL – Energy Recovery Options

Conclusion

Parameter	SCA/ FEL	CEBAF	JLAB IR-FEL	ELRP	4GLS	Cornel ERL	JAERI- FEL	S-D	MARS	KEK Prot	BNL	LUX
Energy	50 MeV	5.7 GeV	48 – 210 MeV	35 MeV	600 MeV	0.1 – 7 GeV	17 MeV	120 MeV	6 GeV	200 MeV	40 MeV	2.5 GeV
Average Current	150 µA	100 nA – 100 μA	5 - 10 mA	60 µA	100 mA	100 mA	5.2 – 40 mA	60 μΑ	1 mA	40 mA	200 mA	10 µA
Bunch Charge		<0.2 pC	60 – 270 pC			77 pC	500 pC	6 pC			10 nC	1 nC
Bunch length		50 µm – 170 fs	1 ps	3 ps		0.1 – 5 ps	< 5 ps	1.9 ps				20 ps
Coupler	Own	WG	WG	SU	TBD	Own design					Coax	
Power Source	10 kW Klystron	Klystron	10 kW Klystron	20kW IOT	???	???	Klystro n		Klystr on		50 kW IOT/kl ystron	10 kW Klystro n
Linac Type	Pre- Tesla	CEBAF	CEBAF	Tesla	Tesla/ Cornel I???	Tesla	CESR		Own		High I	
Linac Frequency	1.3 GHz	1.5 GHz	1.5 GHz	1.3 GHz	1.3 GHz ???	1.3 GHz	500 MHz	3 GHz	181 MHz	1.3 GHz	703.75 MHz	1.3 GHz

ASTeC

Challenges

