

Review of Available Power Sources

Mike Dykes

- Klystron
- IOT (Inductive Output Tube)
- Comparison
- CPI
- e2v
- Thales
- Solid State

Mike Dykes

IOT

ASTeC

Comparison of Klystron and IOT

Klystron

4GLS

DARESBURY

- Electron Bunches formed by density modulation from the cavities.
- Several bunching cavities
 High Gain
 Long Device
 Expensive
- Considerable velocity spread
- Maximum gap voltage determined by the slower electrons
- Rapid reduction in efficiency for reduced output power
- High Gain

ΙΟΤ

- Velocity modulation direct from the cathode
- Little velocity spread

Higher gap voltage
 Increased output power
 Higher efficiency

• Efficiency is approximately constant for reduced output power

- Low Gain
- Grid geometry will not permit IOTs to operate at high frequencies like Klystrons.

Development of a 1.3 GHz Inductive Output Tube for Particle Accelerators

H. Bohlen, Y. Li, Bob Tornoe Communications & Power Industries Eimac Division, San Carlos, CA, USA

1.3 GHz IOT for Particle Accelerators

Typical UHF-Band IOT and Hardware (Eimac K2 Series)

Mike Dykes

•The cathode/grid configuration of modern IOTs is well proven. There are scarcely any grid failures reported.

•Thus there are good reasons to maintain this configuration when designing an IOT for higher frequencies.

•Second-harmonic IOTs have been proposed for some time already. So why not maintain the input circuit tuned to a UHF frequency and just operate the output resonator in L- or even C-band?

•Simulation results for second-harmonic IOTs are not devastating, but not really convincing either.

- •So, what about fundamental-frequency operation without sacrificing the reliability of the existing griddedgun structure?
- •How does this structure actually behave at frequencies exceeding the UHF range, if taking the cathode-grid transit time effects into account?

1.3 GHz IOT for Particle Accelerators

Simulated fundamental-frequency current of existing IOT gun vs. frequency at 22 kV (Class B)

Mike Dykes

Comparison of simulated results

(1.3 GHz, 24 kV, Class B)

Principle	Fundamental	Second harmonic	
Output power	18.0 kW	11.4 kW	
Gain	23.7 dB	22.3 dB	
Efficiency	66.5 %	43.1 %	

1.3 GHz IOT for Particle Accelerators

UHF version

L-band version

Mike Dykes

1.3 GHz IOT for Particle Accelerators

Outline of a 15 - 25 kW CW L-Band IOT in hardware set

Mike Dykes

Prototype test results

Device	Beam voltage	Beam current	CW output power	Gain	Efficienc Y
Alpha-1	30 kV	1.23 A	20.1 kW	21.1 dB	54.4 %
Alpha-1	34 kV	1.58 A	29.5 kW	22.5 dB	54.9 %
Alpha-2	30 kV	1.44 A	26.0 kW	22.4 dB	54.7 %

Next steps

- Closer approach to theoretical efficiency (> 60 %)
- Manufacture 1.5 GHz version
- Design 300 kW peak, 1.3 GHz long-pulse IOT

High Frequency IOT Development Project IOT116LS

Alan Wheelhouse & Steve Aitken

- PVR&D project to develop a 1.3GHz CW IOT
 - Output power 16kW
 - Efficiency > 60%
 - Gain > 20dB
- Project is scoped out to develop the tube with input from potential customers
- Project will deliver 8 prototype tubes and associated circuit assemblies.
 - 5 customer evaluation samples
 - 3 in-house evaluation samples

- Frequency
- Bandwidth at 1dB
- Bandwidth at 3dB
- Beam Voltage
- Beam Current
- Bias Voltage
- Output Power
- Efficiency
- Drive Power
- Gain

1.3GHz >2MHz >4MHz 25kV 1A 100V 16kW >60% <160W >20dB

Beam Profile

Mike Dykes

Mike Dykes

IOT116LS Test Results Test Results

Frequency	1.2986	1.2986	1.2986	GHz
Beam Voltage	24.9	24.9	27.7	kV
Beam Current	0.91	0.84	1.1	Α
Grid Voltage	-104	-122	-109	V
Drive Power	220	260	260	W
Output Power	12.4	12.4	16.3	kW
-1dB bandwidth	2.4	2.4	3.6	MHz
-3dB bandwidth	4.4	4.8	5.7	MHz
Efficiency	54.7	59.3	53.5	%
Gain	17.5	16.8	18.0	dB

Mike Dykes

IOT116LS Test Results

Test Results

Frequency	1.3	1.3	1.3	GHz
Beam Voltage	25	25	25	kV
Beam Current	1.13	1.47	1.05	Α
Grid Voltage	70	71	95	V
Drive Power	113	200	200	W
Output Power	14	19.8	14.9	kW
Efficiency	49.6	53.9	56.8	%
Gain	20.9	20.0	18.7	dB

Mike Dykes

IOT116LS Test Results Phase - Grid Voltage

IOT116LS Test Results

Phase - Beam Voltage

IOT116LS Test Results

Bandwidth

Mike Dykes

IOT116LS & Circuit

Mike Dykes

Mike Dykes

IOT116LS

Mike Dykes

IOT116LS Assembly & Parts

Mike Dykes

THALES TH713

- Pyrobloc[®] beam modulation grid,
- •Pyrolytic graphite filament,
- Impregnated cathode with indirect heating,
- •Water cooled body and collector,
- •Air cooled electron gun and cavity,
- •Plug-in IOT,
- •Electromagnetical focusing.

Courtesy Eric Margoto

Characteristics

Characteristics	Measured value	Unit
Frequency	1.3	GHz
Bandwidth @ -1 dB	2.5	MHz
Power	16	kW
Gain	21	dB
Cathode voltage	28.5	kV
Cathode current	0.9	A
Grid voltage	- 110	V
Filament voltage	10 max	V
Filament current	25 max	A
Water cooling flow rate	30	l/min
Air cooling flow rate	1	m³/min
TH713 collector diameter	160	mm
TH713 height	500	mm
TH713 weight	12	kg
TH18713 (TH713 cavity weight)	45	kg
RF input connector	N type	
RF output connector	Coaxial 3"1/8	

Data from different IOTs

Mike Dykes

TH 713 : Results 🚱

First Prototypes IOT 1.3 GHz

Parameters	Typical value	Measurements	
		<u>Prototype 1</u>	<u>Prototype 2</u>
RF ouput power	16 Kw	15 kW	16 kW
Frequency	1300 MHz	1300 MHz	1300 MHz
Gain	> 20 dB	22 dB	21,5 dB
Efficiency	> 60 %	59 %	61 %
Cathode voltage	23 to 25 kV	27,5 Kv	29 kV
RF input power	< 150 W	95 W	112 W

Mike Dykes

1 (1

- Available at 1.3 GHz
- Low Power ~ 1kW
- Expensive (Drive amplifier ~ 1/3rd price of IOT)
- Need higher Q_0 and Q_L