

Measurement and Control of Microphonics for RIA

HIGAN STATE MICHIGAN STATE MICHIGAN STATE MICHIGAN STATE MICHIGAN STATE

Terry L. Grimm Michigan State University

March 2005

• SRF for the Rare Isotope Accelerator (RIA)

Cryomodule and cavity design

Frequency tuner

- Beam loading & rf requirements
- Microphonics

Vibration Sources

Cryomodule and cavity design issues

Methods of control

Measurement

Adaptive feedforward cancellation

• Summary

Prototype 805 MHz β =0.47 Cryomodule

β=0.47 Tuner-Cavity-Power Coupler

External/room temperature tuner

- Design beam for RIA driver linac
 - cw (no dynamic Lorentz detuning)
 - -400 kW, 400 MeV/u ²³⁸U^{88,89,90+}
 - 0.37 mA

Туре	6-cell	6-cell	6-cell
β_{g}	0.47	0.61	0.81
V _a (MV)	5.12	8.17	13.46
P _{beam} (W)	1660	2640	2600*
Qbeam	9.1×10^7	9.1×10^7	$1.4 \mathrm{x} 10^8$
P _g (W)	3320	5280	5200
\mathbf{Q}_{L}	3.0×10^7	3.0×10^7	$4.7 \text{x} 10^7$
Control bandwidth	25	25	16
$\Delta_{\text{allowed}}(\text{Hz})$	23	23	10

*Decreased from Maximum value due to transit time factor

- Experience
 - S-DALINAC, $Q_L \sim 3x10^7$
 - CEBAF Upgrade, $Q_L \sim low 10^7$

Microphonics – Vibration Sources

- Pumps/rotating machinery
 - Sinusoidal disturbances at harmonics of revolution frequency
- cw/pulsed operation
 - For pulsed operation dynamic Lorentz detuning will dominate
- Helium oscillations
 - 2 K superfluid (no boiling and less pressure fluctuations compared to 4 K)
 - Cryoplant
 - Thermo-acoustic oscillations
- White/broadband noise

Microphonics – Cryomodule Design

- Cavity design
 - Stiffen
 - Compensation (cancel E & B-field detuning)
- Mechanical resonances
 - Eliminate and shift to high frequency (>200 Hz)
- Isolation
 - Ground, piping, waveguides, pumps
 - Inertia

Microphonics – Methods of Control [1]

- Passive and active damping
 - Sources
 - Transmission (pipes, ground, waveguide)
- Passive damping of the cavity
 - Friction (QWR, Facco)
- Lorentz force
 - Small change in cavity amplitude (Delayen)
- Reactive element
 - Use input or dedicated coupler
 - VCX (Shepard), Copper cavities (CERN PS)
- RF phase drift
 - $f_{vib} >> \Delta f_{RF}$, use vector-sum control

- Fast mechanical tuner
 - Piezoelectric, magnetostrictive, electromagnet, etc.
 - Cryomodule & cavity
 - Feedforward/feedback
 - Many algorithms and techniques

- Anticipated vibration spectrum
 - Dominated by sinusoidal disturbances
 - 60 Hz asynchronous motors, etc.
 - Vibration frequencies less than 200 Hz
 - Higher depending on cavity isolation and resonances

Cavity and microphonics circuit

MICHIGAN STATE MICHIGAN STATE

- Measured vibration spectrum
 - Primarily discrete Fourier components
 - Less than 40 Hz pk-pk RF frequency shift
 - Modulation frequencies less than 80 Hz
 - Main components 59.5 & 59.7 Hz
 - Identified using accelerometer as cryoplant screw compressors
 - Additional components near 54 Hz
 - Likely a motor and mechanical resonance

- Individual sinusoidal disturbances are damped
 - Unlimited number of Fourier components
- Generates a control signal
 - Needs disturbance frequency and rudimentary cavity response (no analytic transfer function)

Tuner Bode diagram

MICHICAN STATE MICHICAN STATE MICHICAN STATE MICHICAN STATE MICHICAN STATE

MICHIGAN STATE MICHIGAN STATE MICHIGAN STATE MICHIGAN STA

Active damping

• Adaptive feedforward cancellation of sinusoidal disturbances

6.5 Hz helium oscillation

57 Hz electric motor

- Microphonics dominated by low frequency sinusoidal disturbances from rotating machinery (cw operation)
- Many techniques to damp or alleviate microphonics
 - Source
 - Transmission
 - Design of cryomodule and cavity
 - Passive and active damping
 - Demonstrated Adaptive Feedforward Cancellation for RIA
- CW operation with loaded-Q in the mid-10⁷ range (and likely higher) appears feasible