

Rare Isotope Accelerator (RIA) Cryomodules

IGAN STATE MICHIGAN STATE MICHIGAN S

Terry L. Grimm Michigan State University

March 2005

- Rare Isotope Accelerator (RIA) specifications
- Comparison between RIA and ERL's
- RIA cavity designs
- RIA cryomodule designs
 Elliptical cavity, coupler and tuner
 Superconducting solenoids and quads
 Construction and test results
- 805 MHz tetrode amplifier
- Summary

RIA Specs

- Heavy ion linac (protons through uranium)
 - Beam energy greater than 400 MeV/u (v/c=0.72)
 - Beam power up to 400 kW (target limited/radiation)
- Continuous wave
 - Due to current limitations in ion source
 - ${}^{238}U^{88,89,90+} 0.37 \text{ mA at end of linac}$
- 1400 MV superconducting linac
 - v/c = 0.025 0.72
 - Quarter, half-wave and elliptical cavities

Comparison between RIA and ERL's

- Similar
 - CW (tuner, lower peak fields, no dynamic Lorentz)
 - High loaded-Q (microphonics, power couplers, amplifiers)
- Different
 - Beam break up due to regenerative high current
 - HOM damping
 - Beam velocity
 - RIA longitudinal beam break up
 - LLRF vector sum control of energy gain
 - RF frequency
 - RIA 805 MHz based on SNS and longitudinal acceptance

RIA SRF Cavities

S NSCL

Prototype β =0.47 Cryomodule

HIGAN STATE MICHIGAN STATE MICHIGAN STA

β=0.47 Tuner-Cavity-Power Coupler

β =0.47 Module Assembly

MICHIGAN STATE MICHIGAN STATE MICHIGAN STATE MICHIGAN STATE MICHIGAN STAT

ICHIGAN STATE MICHIGAN STATE MICHIGAN STATE MICHIGAN STA

β =0.47 Module Assembly

IN STATE MICHICAN STATE MICHIGAN STATE MICHIGAN ST

β=0.47 Module Assembly

β =0.47 Module Assembly (Feb 04)

AN STATE MICHIGAN STATE MICHIGAN STATE MICHIGAN STATE

CHIGAN STATE MICHIGAN STATE MICHIGAN STA

Experimental Results

External/room temperature tuner

SC Focusing Elements

Solenoid 9 Telsa Bore: 4.0 cm Effective Length: 10 cm w/ 0.1 kG-m dipole Shielding: Active, Niobium, Cryoperm®10 Quadrupole 31 T/m Bore: 4.0 cm Effective Length: 5 cm Built at MSU Shielding: Iron, Cryoperm®10

805MHz 10kW Amplifier

• THALES TH382 aircooled vacuum tetrode w/ a TH18482 cavity

HIGAN STATE MICHIGAN STATE MICHIGAN STATE MICHIGAN S

Summary

- Rare Isotope Accelerator (RIA) R&D deals with many of the same issues as ERLs
 - CW
 - Cryomodule designs
 - External tuners (no dynamic Lorentz detuning)
 - High loaded-Q
 - Low power amplifiers (~10 kW)
 - Power couplers
 - Microphonics control (more tomorrow)
 - Focusing elements (solenoid and quadrupole)