Options for RF Control & State of Art Simulation and Performance

S. Simrock, DESY

Outline

- Principle of RF Control
- State of the Art
- Simulation
- Measured Performance
- Conclusion

RF System Architecture

Requirements for LLRF Controls

- Maintain Phase and Amplitude of the accelerating field within given tolerances to accelerate a charged particle beam
- Minimimize Power needed for control
- RF system must be reproducible, reliable, operable, and well understood.
- Other performance goals
 - build-in diagnostics for calibration of gradient and phase, cavity detuning, etc.
 - provide exception handling capabilities
 - meet performance goals over wide range of operating parameters

Requirements RF Control

- Derived from beam properties
 - energy spread
 - emittance
 - bunch length (bunch compressor)
 - arrival time
- Different accelerators have different requirements on field stability (approximate RMS requirements
 - 1% for amplitude and 1 deg. for phase (example: SNS)
 - 0.1% for amplitude and 0.1deg.for phase (linear collider)
 - up to 0.01% for amplitude and 0.01 deg. for phase (XFEL)

Note: Distinguish between correlated and uncorrelated error

Stefan Simrock

Sources of Perturbations

o Beam loading Beam current fluctuations Pulsed beam transients - Multipacting and field emission - Excitation of HOMs - Excitation of other passband modes - Wake fields o Cavity drive signal - HV- Pulse flatness - HV PS ripple - Phase noise from master oscillator - Timing signal jitter - Mismatch in power distribution

o Cavity dynamics

- cavity filling
- settling time of field
- o Cavity resonance frequency change
 - thermal effects (power dependent)
 - Microphonics
 - Lorentz force detuning

o Other

- Response of feedback system
- Interlock trips
- Thermal drifts (electronics, power amplifiers, cables, power transmission system)

Microphonics at JLAB

RF Regulation TESLA Cavity (Simulation)

Control Choices (1)

- Self-excited Loop (SEL) vs
 Generator Driven System (GDR)
- Vector-sum (VS) vs individual cavity control
- Analog vs Digital Control Design
- Amplitude and Phase (A&P) vs
 In-phase and Quadrature (I/Q) detector and controller

Stefan Simrock

Control Choices (2)

Generator Driven Resonator

Digital IO Control

The correction term is a function of the innovation, i.e. the discrepancy

$y_v[n+1]-C\hat{x}[n+1|n]=C(x[n+1]-\hat{x}[n+1|n])$

The innovation gain matrix M is chosen to minimize steady-state covariance of the estimation error given the noise covariances $E(w[n]w[n]^T)=Q$ and $E(v[n]v[n]^T)=R$

Stefan Simrock

DESY

Self Excited Loop

Presently achieved

- Amplitude stability:
- Phase jitter:

 $\Delta E/E = 1 \cdot 10^{-3}$ $\Delta \theta/\theta = \pm 0.3^{\circ}$

The phase control matches the specification, the amplitude control does not!

HF-Stabilisierung für Cavities

FZ Rossendorf

Andree Buechner FZ Rossendorf LLRF Workshop, April 25 – 27, 2001

RF Control Model

Goal:

Maintain stable gradient and phase

Solution:

Feedback for gradient amplitude and phase:

Model:

Mathematical description of input-output relation of components combined with block diagram:

Amplitude Loop (general form):

DES

RF Control model using "transfer functions"

Kavitäten für TESLA

Cavity Model

Equivalent circuits

$$C \cdot \ddot{U} + \frac{1}{R_L} \cdot \dot{U} + \frac{1}{L} \cdot U = \dot{I}'_g + \dot{I}_b \quad \text{L.O.D.E.}$$

with
$$\omega_{1/2} := \frac{1}{2R_LC} = \frac{\omega_0}{2Q_L}$$

 $\ddot{U} + 2\omega_{1/2} \cdot \dot{U} + \omega_0^2 \cdot U = 2R_L \omega_{1/2} \cdot (\frac{2}{m} \dot{I}_g + \dot{I}_b)$

• Continuous Model

$$\begin{bmatrix} \cdot \\ v_r \\ \cdot \\ v_i \end{bmatrix} = \begin{bmatrix} -\omega_{1/2} & -\Delta\omega(t) \\ \Delta\omega(t) & -\omega_{1/2} \end{bmatrix} \cdot \begin{bmatrix} v_r \\ v_i \end{bmatrix} + \begin{bmatrix} R \cdot \omega_{1/2} & 0 \\ 0 & R \cdot \omega_{1/2} \end{bmatrix} \cdot \begin{bmatrix} I_r \\ I_i \end{bmatrix}$$

where
$$\omega_{1/2} = \frac{\omega_{rf}}{2Q}$$
 and $\Delta \omega(t) = \omega_0(t) - \omega_{rf}$

State Space Form

$$\dot{x} = A \cdot x + B \cdot u$$
$$y = C \cdot x + D \cdot u$$

$$x(t) = e^{A \cdot t} \cdot x(0) + \int_{0}^{t} e^{A \cdot \tau} \cdot B \cdot u(t-\tau) \cdot d\tau$$

• Discrete Model

State Space Form $x_{k+1} = A_d \cdot x_k + B_d u_k$ $y_k = C_d \cdot x_k + D_d u_k$

where
$$A_d = e^{AT_s}$$
 $B_d = \int_0^{T_s} e^{A\tau} B d\tau$ $C_d = C$ $D_d = D$

$$A_{d} = e^{-\omega_{1/2} \cdot T_{s}} \cdot \begin{bmatrix} \cos(\Delta \omega T_{s}) & -\sin(\Delta \omega T_{s}) \\ \sin(\Delta \omega T_{s}) & \cos(\Delta \omega T_{s}) \end{bmatrix} \approx \begin{bmatrix} 1 - \omega_{1/2} T_{s} & -\Delta \omega T_{s} \\ \Delta \omega T_{s} & 1 - \omega_{1/2} T_{s} \end{bmatrix}$$

$$B_d = \qquad \qquad \qquad \approx \begin{bmatrix} \omega_{1/2}T_s & \Delta \omega \omega_{1/2}T_s^2/2 \\ \Delta \omega \omega_{1/2}T_s^2/2 & \omega_{1/2}T_s \end{bmatrix}$$

with solution
$$x(k) = A^k \cdot x(0) + \sum_{i=1}^k A^{i-1} \cdot B \cdot u(k-i)$$

Excitation of other Passband Modes

Example: TESLA 9-cell cavity

- DESY

Cavity Model

Cavity Field

$$\begin{bmatrix} v_r \\ v_i \end{bmatrix} = \begin{bmatrix} -\omega_{12} & -\Delta\omega \\ \Delta\omega & -\omega_{12} \end{bmatrix} \cdot \begin{bmatrix} v_r \\ v_i \end{bmatrix} + R \cdot \omega_{12} \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} I_r \\ I_i \end{bmatrix}$$

Mechanical Properties

$$\begin{bmatrix} \dot{\Delta} \omega \end{bmatrix} = \begin{bmatrix} -1/\tau_m \end{bmatrix} \cdot \begin{bmatrix} \Delta \omega \end{bmatrix} + \begin{bmatrix} -2\pi/\tau_m K_m \end{bmatrix} \cdot \begin{bmatrix} (v_r^2 + v_i^2) \end{bmatrix}$$
Or

$$\begin{bmatrix} \Delta \omega \\ \dot{\Delta \omega} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\omega_m^2 & -1/\tau_m \end{bmatrix} \cdot \begin{bmatrix} \Delta \omega \\ \dot{\Delta \omega} \end{bmatrix} + 2\pi \omega_m^2 K_m \cdot \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ (v_r^2 + v_i^2) \end{bmatrix}$$

Typical Parameters

$$\Delta \omega = \omega_0 - \omega_{rf}, \quad \omega_{12} = \frac{\omega_0}{2 \cdot Q_L}, \quad R = \left(\frac{r}{Q}\right) \cdot Q_L,$$
$$\omega_0 = 2\pi \cdot 1.3 \cdot 10^9, \quad Q_L = 3 \cdot 10^6, \quad \left(\frac{r}{Q}\right) = 1030 \quad \frac{\Omega}{m}, \quad K_m = -1 \quad \text{Hz/(MV/m)}^2$$

Modelling Lorentz Force Detuning

where $\Delta \omega_m$: detuning of mode *m*, V_{acc} : accelerating voltage, τ_m : mechanical time constant of mode *m* and K_m : Lorentz force detuning constant of mode *m*.

Stefan Simrock

____(DESY

Transfer Function

Transfer function Lorentz Force --> Detuning, SNS cavity

courtesy: J. Delayen, JLAB, M. Doleans, ORNL

ERL 2005

Stefan Simrock

DESY

Active Compensation of Lorentz Force Detuning (1)

Active Compensation of Lorentz Force Detuning (2)

9-cell cavity operated at 23.5 MV/m

Lorentz force compensated with fast piezoelectric tuner

DES

Transfer Function

Transfer function Piezo Tuner --> Detuning, SNS cavity

courtesy: J. Delayen, JLAB, M. Doleans, ORNL

ERL 2005

Stefan Simrock

DESY

Microphonics Control

Microphonics Suppression with Feedforward

ERL 2005

Stefan Simrock

Digital Control at the TTF

Digital I/Q Detection

- downconversion of cavity field to IF frequency at 250 kHz
- complete phase and amplitude information of the accelerating field is preserved.

• sample IF signal at 1MHz rate

Stefan Simrock

 subsequent samples describe real and imaginary component of the cavity field.

Performance at TTF (1)

Performance at TTF (2)

C67 DSP board

- Stefan Simrock

C67 DSP board

Stefan Simrock

Digital Feedback Hardware (3)

Gun and ACC1

ACC2, ACC3, ACC4 & ACC5

FPGA based **RF** Gun Controller

ERL 2005

-Otefan Simrock

SNS Controller and Initial Performance Test

New Field Control Module for SNS

The prototype Field Control Module. The Analog Front End, Digital Front End, and RF Output daughtercards (left to right) are mounted on the VXI motherboard.

L. Doolittle

Stefan Simrock

Ultra-Fast Digital RF Field Control System for CESR and ERLs

Matthias Liepe

- very low delay in the control loop (»1 m)
- Field Programmable Gate Array (FPGA) design combines the speed of an analog system and the flexibility of a digital system
- high computation power allows advanced control algorithms
- all boards have been designed in house
- generic design: digital boards can be used for a variety of control and data processing applications

Cornell's Digital RF Control System:

RF Down-Converters

500 MHz frequency – synthesizer

vector modulator

Third Generation RF Control Hardware

- 8 ADCs 14 bits, 80 MHz
- 4 DACs, 14 bits, 125 MHz
- DSP Board Virtex2 XC2V4000
- Optolink 3.125 GHz

Meeting the high field stability requirements demands for new, noise-reduced, highly linear downconverters.

New downconverters are already installed in VUV-FEL and undergo intensive testing.

Picture of 3rd generation downconverter.

- 8 in/output channels, 1 LO input
- Linearity <-50dB
- Crosstalk between channels <-50dB
- LO leakage <-50dB @ 1.3GHz
- LO stability –15dB –5dB

Design and assembly at DESY, layouting by external company

RF Gun Control

Requirements:

- Accelerating gradient: 40 MV/m
- Repetition rate: 1-10 Hz
- rf pulse length: 100-900 µs
- Amplitude stability: $\pm 0.25\%$
- Phase stability: $\pm 2^{\circ}$

Solutions:

- Use forward and reflected power
- Precise IQ detectors for field control
- Fast logarithmic detectors with big dynamic range for measurement of decaying field

Difficulties:

- No probe in the gun
- Low time constant of the cavity
- High precision needed

• RF digital feedback system (TTF2) :

• +I,-I,+Q,-Q detection scheme :

• Stability requirements on phase and amplitude of the cavity field vector :

Requirement for CEBAF (JLAB)

RF control requirements with vernier

RMS error	uncorrelated	correlated
σ_A	2×10^{-4}	1.1×10^{-5}
σ_{f}	0.25°	0.13°
σ,	2.6°	00

- σ_A : relative RMS amplitude error
- σ_f : fast RMS phase error
- σ_1 : slow RMS (along linac) phase error

ERL 2005

Vectormodulator vs Phaseshifter

Bode Plot of Controller at JLAB

Performance Measured at JLAB

Performance Measure at JLAB

Measured RMS errors

Frequency Range [Hz]	Relative Amplitude Error	Phase Error [°]
$\begin{array}{c} 0 - 10^{0} \\ 0 - 10^{1} \\ 0 - 10^{2} \\ 0 - 10^{3} \\ 0 - 10^{4} \\ 0 - 10^{5} \\ 0 - 10^{6} \end{array}$	5.5×10^{-6} 1.1×10^{-5} 3.5×10^{-5} 4.1×10^{-5} 5.5×10^{-5} 7.0×10^{-5} 7.5×10^{-5}	1.1×10^{-3} 1.2×10^{-3} 3.0×10^{-3} 4.6×10^{-3} 7.0×10^{-3} 1.6×10^{-2}

Performance at Rossendorf

Stefan Simrock

Stability Measured for J-PARC

F4

•	FIELD CONTROL ALGORITHMS
	(1) Feedback
	(a) PID filter
	(b) Kalman filter
	(c) adaptive filters
	(c) Smith predictor
	(d) optimal controller
	(2) Feedforward
	(a) beam loading compensation
	(b) beam energy feedback
	(c) bunch length feedback
	(3) Klystron linearization
	(4) Exception handling
	(a) quench detection and handling

D. High level procedures

- (1) Adaptive feedforward
 - (a) response matrix based
 - (b) transferfunction based
 - (c) robust
 - (d) different beam modes
- (1) System identification
 - (a) beam phase and current
 - (b) loaded Q
 - (c) incident phase
- (3) Waveguide tuner control
- (4) Momentum management system
- (5) Field control parameters optimization
- (6) Operation at different gradients
- (7) Operation at the performance limit
 - (a) maximize availability
 - (b) maximize field stability
- (8) Hardware diagnostics
- (9) On-line rf system modelling

B. LLRF System Measurement Algorithms

- (1) Loop phase rotation matrix
- (2) Field calibration rotation matrix
 - (based on rf, beam based transients, and spectrometer)
 - (a) gradient calibration
 - (b) phase calibration
- (3) Vector-sum calculation
- (4) Measurement of incident phase (vector-sum !)
- (5) Beam phase measurement
- (6) forward/reflected power calibratio(a) correct for directivity of couplers
- (7) Cavity detuning
 - (a) average during pulse
 - (b) detuning curve during pulse
- (8) Loaded Q

C. Cavity Resonance Control

- (1) Slow tuner
 - (a) maintain average resonance frequency
 - (b) maximize tuner lifetime
- (2) Fast tuner (ex. piezoelectric tuner)
 - (a) dynamic Lorentz force compensation
 - (b) microphonics control
 - (c) minimize rf power required for control

E. Miscellaneous

- (1) RF System Database
 - (a) calibration coefficients
 - (b) subsystem characteristics
- (2) Alarm and warning generation
- (3) Automated fault recovery
- (4) Finite state machine

Conclusion

- Field regulation ranging from 1% to 10⁻⁴ amplitude and 1 deg. to 0.01 deg. for phase (in critical sections) will be required for future superconducting and normalconducting accelerators
- Noise sources for superconducting cavities are understood
 - Microphonics (typ. 10 Hz)
 - Lorenz force detuning (1-3 Hz/(MV/m)^2)
 - Beam loading (few %)
- Rapid development in digital technology (DSP, FPGA, ADC, DAC) favors digital design for feedback/feedforward control.
- Fast Control with incident wave
 - feedforward for repetitive errors (beam,LFD, klystr.)
 - feedback (stochastic errors)

Stefan Simrock

- Limitation of feedback: Latency in Loop (limits loop gain) and Noise
- Limitation of feedforward: Measurement and Estimation of Perturbations
- Resonance control with fast tuner promising
 - Lorentz force compensation successfully demonstrated
 - For microphonics control first result promising results
- Present achievements
 - 10⁻⁴ in amplitude and 0.03 deg. have been achieved at QL=1e7
- Outlook: Phase stability of 0.01 deg. appears feasible

Stefan Simrock