New scheme of HOM damping of L-band cavity using a radial transmission line

ERL2005 Workshop 2005/3/20

High Energy Accelerator Research Organization (KEK) Kensei Umemori, Masaaki Izawa, Kenji Saito, Shogo Sakanaka

Original idea was proposed by T. Shintake for normal conducting cavity.

Feature of radial line damper with filter structure

- Strong damping is expected
 But, need filter for acceleration mode
- Broadband
- Effective for all polarizations
- Quadrupole modes can be damped

Simulation (MAFIA, 1cell)

- Estimation by perturbation method using MAFIA.
- Q value of the fundamental mode can be kept $>10^8$.
- All dipole and monopole modes, except TM010, can be damped to < a few thousands.
- Quadrupole modes can be also damped to $\sim 10^6$.
- The results are very promising.

Freq. [MHz]	Mode	Q	Rsh/Q [ohm]	Rt/Q [ohm/cm ²]	Rt/Q [ohm/cm⁴]
1301	TM010	4.3x10 ⁸	105.6		
1673	TE111	118		14.9	
1835	TM110	3343		31.7	
2294	TE221	2.4x10 ⁶			2.3x10 ⁻³
2426	TM011	2332	29.6	1.5	
2473	TE211	1.5x10 ⁶			1.7x10 ⁻³
2696	TM020	875	0.3	1.0	

Model of HOM damper and cavity

Radial HOM damper (Without filter structure)

TESLA type 9 cell Cavity (Cu model)

RF absorber (TDK IRL02, 2mm thick)

 $\varepsilon' = 207.0 \quad \varepsilon'' = 8.5 \quad \mu' = 5.1 \quad \mu'' = 6.3 \quad @ 2GHz$

Low power measurements

Aimed to investigate the feature of radial HOM damper.

HOM damper was located 6cm away from right side end cell. ---- Optimized for 1cell, but not for 9cell

Frequency [Hz]

External Q of damper Frequency Mode $1 \times 10^4 \sim 1 \times 10^5$ 1620~1789 **TE111 Results (9cell)** $2x10^4 \sim 1x10^6$? 1799~1889 TM110 $5 \times 10^4 \sim 1 \times 10^6$? 2381~2457 TM011 $2x10^4 \sim 3x10^5?$ 2675~2773 TM020

Results (1cell) TE111 mode

Red : Without HOM damper Blue : With HOM damper

Freq.	Mode	Q value w/o damper	Q value w/ damper	External Q of Damper
1620.4	TE111-1	20936	16682	82096
1620.4	2	21278	18278	129631
1627.8	3	20011	13695	43391
1627.8	4	19556	13076	39456
1640.5	5	20726	11094	23871
1640.6	6	20479	10883	23227
1658.1	7	21197	9782	18164
1658.2	8	21651	9733	17682
1680.1	9	22044	9141	15616
1680.3	10	22007	8898	14937
1705.6	11	22841	9101	15130
1705.8	12	22648	8788	14359
1733.2	13	24281	9240	14916
1733.4	14	23754	9404	15567
1761.2	15	24935	10036	16795
1761.5	16	24498	10314	17815
1788.5	17	25554	9166	14293
1788.9	18	24817	9356	15017

Discussions

- Further optimization for 9cell cavity.
 - Placing the damper closer to the cavity
 - Preparing the dampers on the both side
 - Larger beampipe radius
 - etc...

 \implies possible to damp to $10^3 \sim 10^4$?

- Design and test of filter structure is scheduled.
- R&D for RF absorber
- Is this radial type HOM damper fit in cryomodule?

Summary

- We proposed a new HOM damping scheme, which uses a radial transmission line with filter structure.
- Simulation shows promising results.
- We have carried out low power measurements.
- HOMs are well damped for 1cell case.
- At moment, the results are not enough for 9cell. But good results are anticipated by placing damper closer to the cavity end.
- We anticipate better HOM damping with some improvements.