Digital BPMs and Orbit Feedback Systems

T. Schilcher, M. Böge, M. Dehler, B. Keil, P. Pollet, V. Schlott

Outline

- stability requirements at SLS storage ring
- digital beam position monitors (DBPM)
- SLS global fast orbit feedback system
- SLS multi bunch feedback system
- beam stabilization plans at European XFEL

Stability Requirements at SLS

• Angular stability: $\Delta\Theta_{\rm beam} < 1 \ \mu rad^*$

* typical $< 10 \mu m$ at the experiment

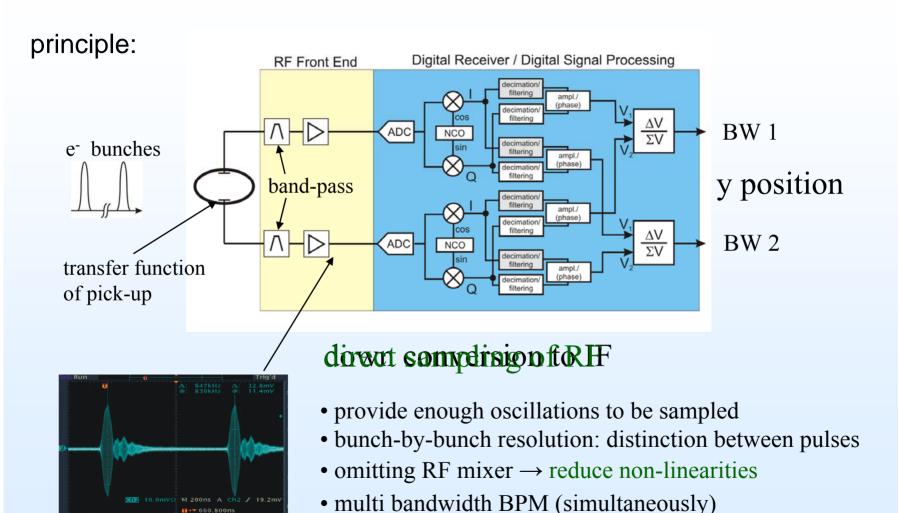
Position stability:

 $\sigma/10$ at Insertion Devices (ID)

- \rightarrow low beta ID: vertical beam size ~10 µm (1% coupling)
- \rightarrow 1 μ m RMS in vertical plane
- suppression of orbit distortion up to 100 Hz by factor of >5
- fast compensation of orbit distortions due to ID gap changes

Beam Stability Strategy at the SLS

- reduce drifts and vibrations as much as possible


 (air and water temperature regulation, proper girder design, top-up operation,...)
- reduce well-known noise sources by feed forward (ID gap changes,...)
- suppress remaining noise on e- beam by fast orbit feedback
- use all available correctors for fast orbit feedback (no distinction between slow and fast orbit feedback)
 - lock beam to center of BPMs
 - monitor mechanical movement of BPMs with respect to adjacent quads by encoder system
 - good feedback systems:

beam stability ≈ BPM stability & resolution

Why digital BPMs?

- digitize beam position as early as possible to
 - simplify RF front end
 - minimize non-linearities of analog components (mixers, etc.)
 - minimize temperature dependencies & drifts in electronics
 - minimize beam current dependence, guarantee high stability and reproducibility of beam position
- reduce number of analog components in processing chain
 - potential to reduce noise sources
- high flexibility in output bandwidth of digital BPM due to programmable filters (+decimation)
 - single pulse, turn-by-turn capability (broadband BPM) closed orbit capability (narrow band BPM)
 - choose operating mode for required application (machine studies, orbit feedbacks,...)

Digital Beam Position Monitor (DBPM)

 $(f_{rep} \ll f_{band-pass})$

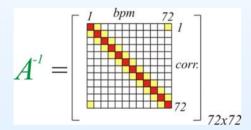
SLS DBPM Specifications and Performance

Parameter	Specification for SLS	SLS DBPM Performance			
RF carrier freq.					
IF carrier freq	section of SLS storage ring BPM chamber —				
Dynamic Range	20 15 10 10 10 20 30 10 10 10 10 10 10 10 10 10 10 10 10 10				
Beam Current Dependence 1-400 mA					
relative 1 to 5 range	Coordinates (mm)	5 111111			
position measuring radius	-10	-10			
resolution*) / BW	-20 -30 -20 -10 0 10 20 30 x-Coordinates (mm)				

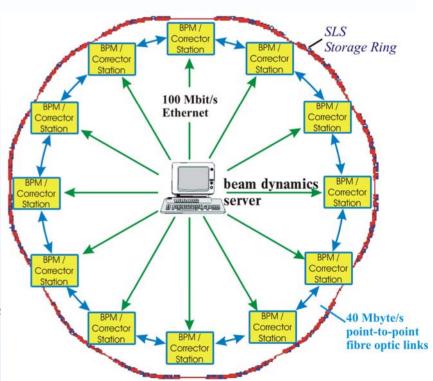
*) with SLS ring vacuum chamber geometry

recent developments: DBPM

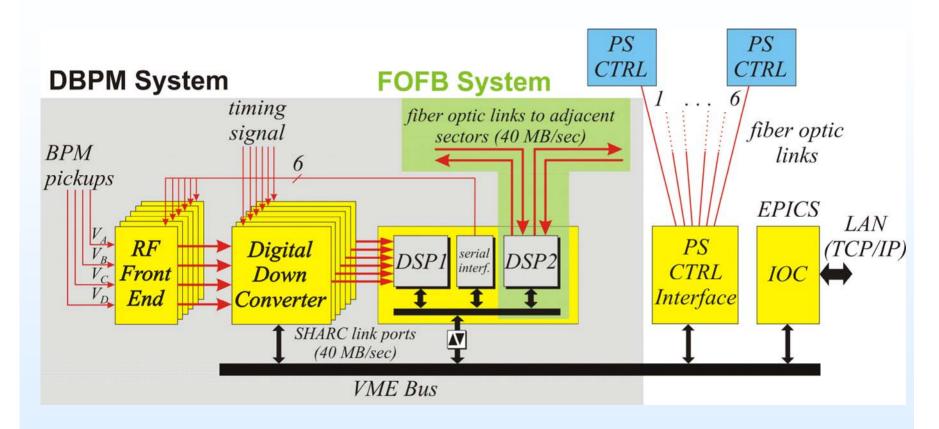
(Instrumentation Technology)


(scaled to SLS ring vacuum chamber geometry)

resolution: $< 1 \mu m @ 0.5 \text{ MHz BW}$

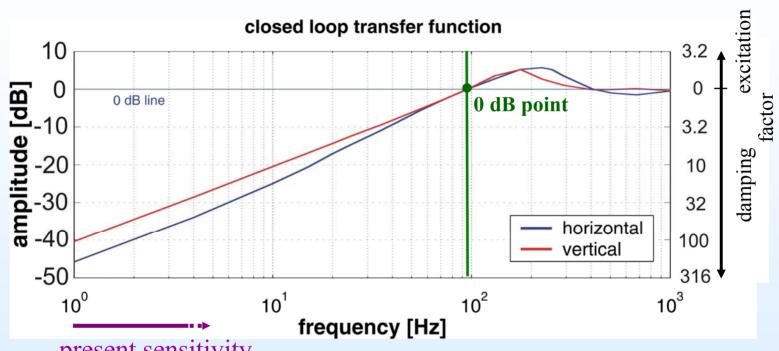

beam current dep.: $< 2 \mu m (1:5 \text{ range})$

SLS Fast Orbit Feedback Layout


- only one feedback (no separation between slow and fast feedback)
- 72 BPMs / 72 corrector magnets in each plane, 12 sectors
- sampling and correction rate: 4 kHz
- inverted response matrix: sparse matrix

- decentralized data processing possible
- point-to-point fiber optic ring structure for global data exchange

SLS DBPM / Fast Orbit Feedback Hardware Layout (sector view)

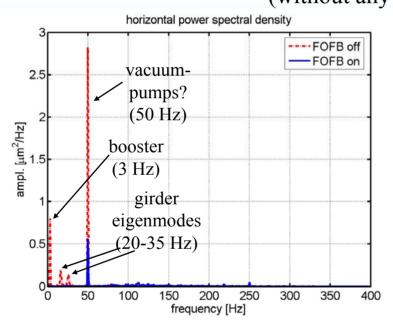

technology choice: 1998

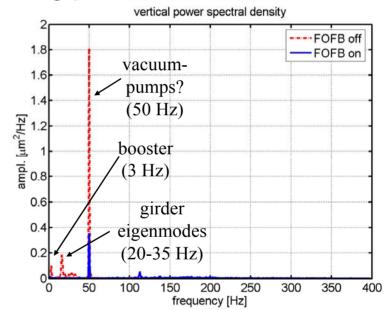
Performance: Stability Frequency Ranges

- short term stability: $\sim 6 \text{ ms} 1 \text{ s}$ (1 Hz 150 Hz) mainly limited by
 - BPM resolution
 - corrector magnet resolution
 - system latency
 - eddy currents in vacuum chambers
- **long term stability**: 1 s days (run period) mainly limited by
 - reliability of hardware components
 - systematic errors of BPMs
 - thermal equilibrium of the machine (\rightarrow top-up)

Performance: Short Term Stability

SLS transfer function measurement


present sensitivity range of the experiments


0 dB point: ~ 95 Hz (in both planes)

SLS FOFB: spectral power density (1-400 Hz)

Fast Orbit Feedback off

(without any ID gap change)

horizontal

vertical

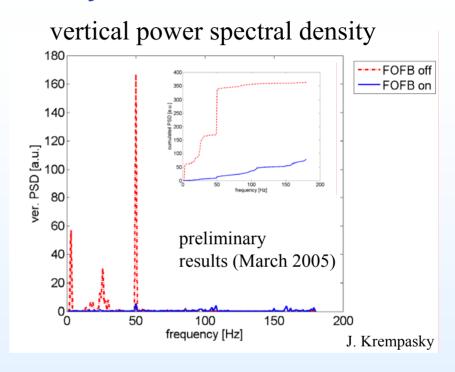
(measured at tune BPM, outside of the feedback loop, β_x =11 m, β_y =18 m)

SLS FOFB: Cumulated Power Spectral Density

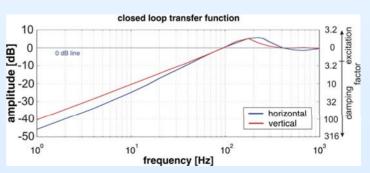
	horizontal		vertical	
FOFB	off	on	off	on
1- 100 Hz	$0.73 \ \mu\mathrm{m} \cdot \sqrt{\beta_{\mathrm{x}}}$	$0.46 \ \mu m \cdot \sqrt{\beta_x}$	0.43 μm · $\sqrt{\beta_y}$	$0.30 \ \mu \mathrm{m} \cdot \sqrt{\beta_{\mathrm{y}}}$
100-150 Hz	$0.07 \ \mu \text{m} \cdot \sqrt{\beta_{\text{x}}}$	$0.18 \ \mu m \cdot \sqrt{\beta_x}$	$0.06 \ \mu m \cdot \sqrt{\beta_y}$	$0.10 \ \mu m \cdot \sqrt{\beta_y}$
1-150 Hz	$0.73 \ \mu m \cdot \sqrt{\beta_x}$	$0.49 \ \mu m \cdot \sqrt{\beta_x}$	$0.44 \ \mu m \cdot \sqrt{\beta_y}$	$0.32 \ \mu m \cdot \sqrt{\beta_y}$

(incl. sensor noise)

RMS values to be scaled with $\sqrt{\beta}$ at desired location


Examples (with FOFB):

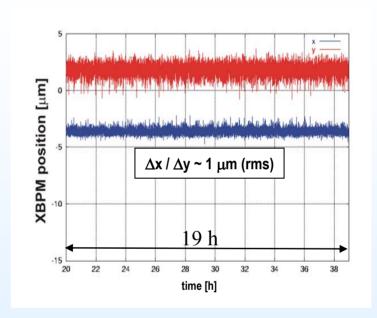
Tune BPM (
$$\beta_y$$
=18 m): $\sigma_y = \sqrt{18} \cdot 0.30 \ \mu m = 1.3 \ \mu m \ (1 - 100 \ Hz)$
Source point at ID 6S (β_y =0.9 m): $\sigma_y = \sqrt{0.9} \cdot 0.30 \ \mu m = 0.28 \ \mu m \ (1 - 100 \ Hz)$


Source point at ID 6S (
$$\beta_y$$
=0.9 m): $\sigma_v = \sqrt{0.9 \cdot 0.30 \, \mu m} = 0.28 \, \mu m \, (1 - 100 \, Hz)$

Performance: Short Term Stability at Photon BPM

external reference:
Photon BPM at beam line 6S
(protein crystallography)

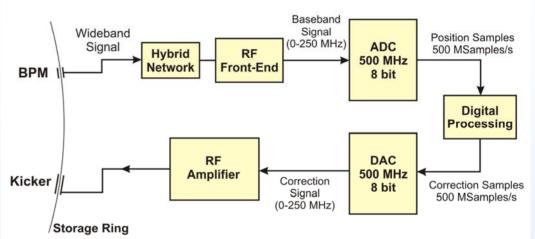
⇒ successful suppression
 of noise sources
 originating from the
 electron beam


Performance: Long Term Stability

Strategy @ SLS:

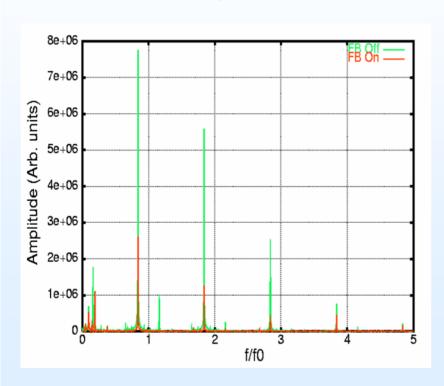
- if photon BPMs are reliable enough
 - ⇒ used to minimize systematic effects of RF BPMs, girder drifts, temperature drifts, etc.
 - ⇒ slow PBPM feedback which changes reference orbit of FOFB (cascaded feedback scheme)
 - ⇒ keep photon beam position constant at first PBPM

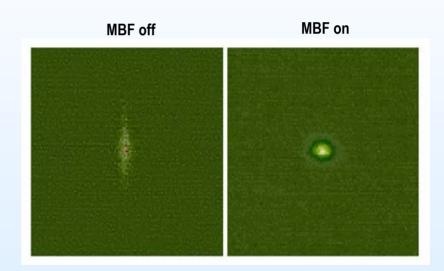
• so far: only one PBPM at ID beam-line 4S and 6S is reliable enough and understood to be integrated in PBPM feedback


photon BPM signals (at 06S) at ~ 10 m from source point data points are integrated over period of 1 s

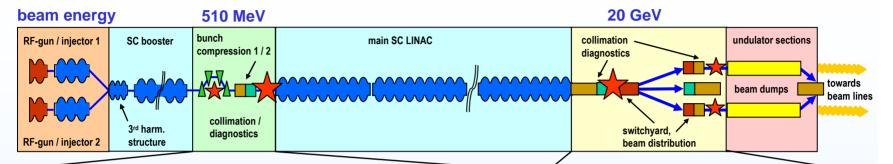
SLS Multi Bunch Feedback System

Parameters & Layout


- bunch spacing: 2 ns
- 1 μrad maximum kick angle
 ② 2.4 GeV
 (15 kHz 250 MHz)
- overall latency time ~ 3 μs
 (3 turns of SLS storage ring)
- fast real time ADC and DAC mezzanine boards with 8 bit, up to 1 GS/s and 750 MHz analog band width for low latency data processing
- clock generator for synchronization on picosecond time scale
- MBF has been developed in close collaboration with ELETTRA


SLS Multi Bunch Feedback System

First Results


vertical mode pattern in SLS storage ring (revolution frequency $f_0 = 1.04 \text{ MHz}$)

corresponding pinhole camera images

Requirements for Beam Stabilization along the European XFEL

Injector / Bunch Compressor

- transverse and longitudinal phase space can be deteriorated through beam fluctuations caused by:
 - ⇒ current variations and timing jitter at RF photo gun
 - ⇒ RF transients and wake fields

beam size $\sigma_{x,y}$: ~ 70 μ m bunch length σ_z : 1.8 – 0.02 mm stability requirement*:

transverse: $\sigma/10$ \rightarrow $\Delta x/y < 7 \mu m$ (rms) longitudinal: 0.015° @ 1.3 GHz \rightarrow Δz < $10 \mu m$ / 30 fs (rms)

Beam Distribution / Undulator Sections

- transverse beam stabilization behind main LINAC needed for:
 - stable SASE operation
 - stable user operation

transv. beam size $\sigma_{x,y}$: ~ 30 μ m bunch length σ_z : 20 μ m

stability requirement*:

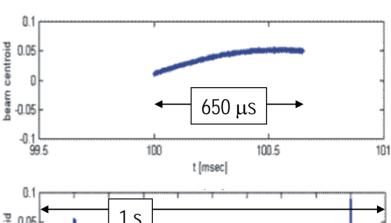
transverse: $\sigma/10 < 3 \mu m (rms)$

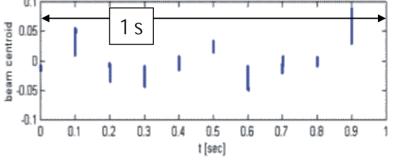
^{*} stability requirements for stable SASE operation at bunch-by-bunch distances of 200 ns

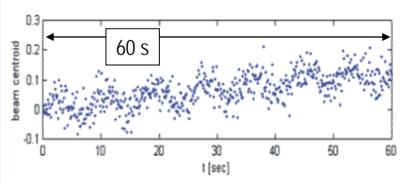
Noise Sources (TTF1)

Fast motions

- switching magnets, power supply jitter
- RF transient, RF jitter
- photocathode laser jitter
- beam current variations
- long range wake fields


Slow and medium term motions


- ground settlement, temperature drifts
- girder / magnet excitation by ground motion, cooling water, He flow...


Leads to:

- beam centroid motions
- beam arrival time jitter
- → requires intra bunch feedback
- → bunch train to bunch train feedback

example of beam centroid motion (a.u.)

Parameters for Intra Bunch Train FB Systems (IBFB) for the European XFEL:

Stability Requirements behind SC Booster

beam energy: 510 MeV bunch spacing τ_b : 200 ns transv. stability: $\sigma/10$

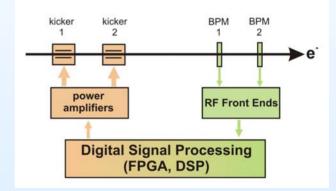
⇒ < 7 μm (rms)

long. stability: 0.015° @ 1.3 GHz

⇒ < 10 μm (rms)
⇒ 30 fs (rms)
</p>

Stability Requirements behind main LINAC

beam energy: 20 GeV bunch spacing τ_b : 200 ns transv. stability: $\sigma/10$


⇒ < 3 μm (rms)

IBFB Parameters

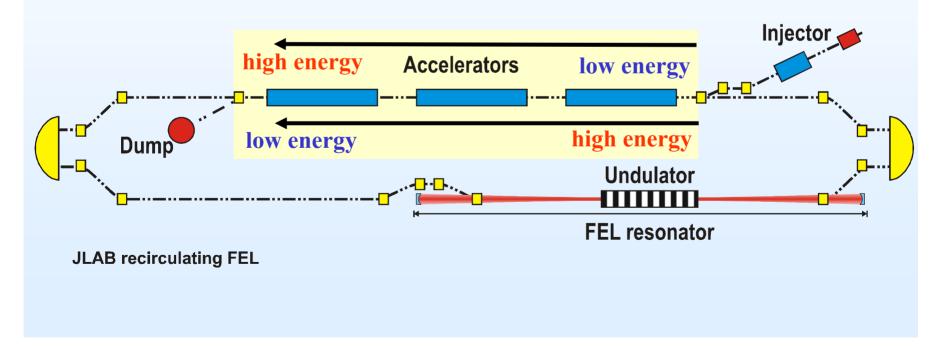
system resolution: \sim 1 μ m system latency: < 200 ns

ADC / DAC resolution: ~ 12-14 bit @ 1 GS/s

FPGA / DSP data rate: ~ 1 Gbyte/s FPGA clock rate: > 200 MHz

RF amplifier (x,y,z)

power ≤ 4 kW
BW: ≤ 100 MHz
transv. kick strength: ≤ 5 μrad


behind SC Booster

behind main LINAC

≤ 10 kW ≤ 100 MHz ≤ 0.5 μrad

Orbit "Feedback" at ERLs

- orbit correction is more feed forward than feedback
- where is orbit stability required? To which level?
- orbit correction necessary along the accelerator? (different energy)
- frequency range of noise sources?

Summary

- digital BPMs already provide few μm resolution in the ~MHz bandwidth
 - → potential to go to μm resolution with several MHz BW in the near future
- sub-μm orbit stability achievable in 3rd generation light sources up to several 100 Hz BW (good mechanical design of girders, fast orbit feedback system(s))
- photon BPMs → sub-μm resolution of e⁻ beam due to long lever arm
 → valuable devices to be integrated in orbit feedback systems
- multi bunch feedback system (SLS) under commissioning, design of orbit stabilization system for European XFEL has just started
- orbit feedback: certainly some common grounds of storage rings and ERLs...