Machine protection and beam loss detection systems

Holger Schlarb
DESY
22607 Hamburg

Fundamentals on machine protection

• logic

positive: differential beam toroid signal exceed

> negative: loss monitor threshold exceed

Recommended: use both ways

- beam modes i.e.
 - ➤ diagnostics mode (1..10 bunches, or ERL 100nA)
 - beam start up mode (<30 bunches, or ERL 10uA)
 - > medium operation (macro-pulse, or ERL 1mA)
 - ➤ full operation (...100mA)

Next mode only permitted if proceeding mode meets requirements Each mode has own threshold and limitations

Fundamentals on machine protection

- machine modes
 - ➤ Injector mode
 - ► Linac mode
 - >ERL mode
 - >FEL mode

Defines the beam line where protection is applied

- passive protection
 - > collimator and beam cleaning system
 - > defined restriction of geometrical aperture
 - good shielding of critical components
 - insertion devices
 - > sacrificial device (foils, collimator)
 - ➤ damage reduction (isolation vacuum, easy removable)

Increases life time and reaction time, reduce costs in case of failure

Fundamentals on machine protection

- emergency switch off
 - **►**Laser off

(cable + 200ns ~ $0.5 \mu s-3 \mu s$)

Emergency dump

 $(kicker + 200ns \sim 0.5 \mu s)$

>Activation of sweeper

(sweeper + $100 \text{ns} < 0.2 \, \mu \text{s}$)

Usually fast laser switch sufficient, sweeper is good option

- critical item for machine protection
 - > activation of components (permanent losses, >10W)
 - personal protection (permanent losses) -> shielding of tunnel
 - -E<20MeV mainly against γ, medium shielding required
 - -E>20MeV mainly against giant neutron
 - -E>300MeV dominated by fast neutrons
 - hardware: cables (>10MGy), optical components (0.1-1MGy) electronics/cameras (1-10kGy), permanent magnets NdFeB?
 - > vacuum chamber: heating slowly, sudden losses

Beam Inhibit System

Transmission Based Protection System for TTF

Dev.	Name	Z-Position	Dev.	Name	Z-Position	Comment
T1	Toroid/3Gun	1,25 m	Т9	Toroid/12Exp	244,97m	FEL Beamline, total length
T1	Toroid/3Gun	1,25	T11	Toroid/16Byp	161,254m	Bypass Beampath, total length
T2	Toroid/2UBC2	20,548 m	T10	Toroid/?Dump	Ca. 248,9 m	Make sure beam reaches the dump (FEL Beamline)
T2	Toroid/2UBC2	20.548 m	T10	Toroid/?Dump	Ca. 248,9 m	Make sure beam reaches the dump (Bypass)

Charge Measurement: Toroids

In House Development:

- Single Bunch Resolution ~ 5 10⁻³
- Measurement Range up to 5nC (0.5V/nC)
- Suitable for 9 MHz Bunch Rep. Rate

Loss Monitor System

≈ 60 Fast Loss Monitors (Photomultipliers) at critical Positions

Radiation Monitoring

Radiation losses in undulator

- limits beam operation current to about 20nA (+20nA darkcurrent)
- already several kGy accumulated (20-30% of expected lifetime)
- reduced rep. rate to 2 Hz, and rf pulse duration to 60µs (dark current)

