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Motivation
carrier-envelope phase stabilized high-repetition rate lasers
have impact on:

optical frequency metrology:

ultrafast time-domain spectroscopy:

Ultrastable clocks:
Few-femtosecond stable pulse trains
Few-femtosecond stable microwave oscillators
Next generation, all optical master oscillators  
Stabilized TiSa oscillators for slicing



The Carrier-Envelope Phase
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fR = 1/TR    : pulse repetition rate here:
fceo = fR / 5
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fceo = 1/Tceo : field rep. rate



Why carrier envelope phase stabilization ?

Present concept: combine low jitter of fiber lasers (high 
frequency regime) with low jitter of microwave oscillator 
(low frequency regime)
Feasible: use optical frequency to absolutely stabilize 
optical frequency comb and use it as divider
In RF terms: synchronize laser to optical reference 
frequency (phase detector @100THz reference 
frequency)

To supply intrinsically stable optical oscillator:
1. Stabilized repetition rate through lock onto atomic transition 
2. Stabilized “offset” of frequency comb



Carrier-Envelope Phase and Frequency Metrology

Periodic Pulse Train with TR = 1
fR

T. Udem, et al., PRL 82, 3568 (1999)
D. Jones, et al., Science 288, 635-639 (2000)
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• Ultra-stable pulse train of optical pulses
• Photodetection ultrastable microwave oscillator or optical clock

Needs one octave of spectrum!
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Carrier-envelope phase stabilized
200 MHz octave-spanning Ti:sapphire laser



200 MHz octave-spanning Ti:sapphire laser

6.5 W pump @ 532 nm, ~200 mW average output power

2 mm Ti:sapphire crystal, double-chirped mirror pairs, BaF2 plate/wedges 
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Double-chirped mirror pair covering one octave



200 MHz octave-spanning Ti:sapphire laser

f-to-2f self-referencing:
~1 µW in 10 nm  @ 550 nm
~1 mW in 10 nm @ 1100 nm
SHG conversion efficiency ~10-3 in 2 mm BBO 



Carrier-envelope phase stabilized
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Carrier-envelope phase stabilized
200 MHz octave-spanning Ti:sapphire laser



Heterodyne beat

~ 35 dB in 100 kHz bandwidth

carrier-envelope beat linewidth < 10 Hz (measurement limited)



Carrier-envelope phase noise

power spectral density (PSD) of carrier-envelope phase fluctuations

integrated carrier-envelope phase error ∆φ

45as stability

∆φ=0.10 rad (integrated from 2.5 mHz to 10 MHz)



Carrier-envelope phase noise

power spectral density (PSD) of carrier-envelope phase fluctuations

integrated carrier-envelope phase error ∆φ

PI controller

∆φ=0.10 rad (integrated from 2.5 mHz to 10 MHz)



(intermediate) Conclusions

carrier-envelope phase stabilized 
200 MHz octave-spanning Ti:sapphire laser

compact and stable f-to-2f self-referencing scheme 
without separating and recombining the f and 2f components

carrier-envelope beat with 35 dB signal/noise (100 kHz bw) 

carrier-envelope beat linewidth < 10 Hz (measurement limited)

integrated carrier-envelope phase error 0.10 rad (45 as @ 800 nm)

Jitter can be further reduced by using EOM instead of AOM (lower
latency)



Outlook down the track

Possible to replace Ti:Sapphire laser with EDFL and 
external spectral broadening for use as master oscillator
Similar locking technique for the carrier-envelope phase 
and referencing to atomic transition to compensate for 
long-term drifts.
Benefit: few femtosecond stable, self-referenced clock at 
telecom wavelengths
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SFG-based optical clockwork

locking 
electronics
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Benefit: lock at 88 THz gives extremely high phase resolution
Frequency comb acts as “zero”-noise divider 

Collaboration with J. Ye, JILA and M. Gubin, Lebedev Phys. Inst. 
to appear in Optics Letter



Single sideband phase noise of CH4 clock
(compared to iodine-clock)

Data scaled to a 1 GHz carrier



Present high frequency phase noise of fiberlasers

Yb-fiber laser: <22 fs jitter (10kHz to Nyquist)

PRELIMINARY DATA



Summary

High-repetition rate robust TiSa-laser with high quality 
carrier-envelope phase stabilization demonstrated
Possible to also use EDFL with external spectral 
broadening
Experiments underway to produce optical clocks with 
few-femtosecond stability

Road to purely optical master oscillators open



Thank you for your attention
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