The Hadron-Hadron Interaction from the Lattice

P. Bedaque Lawrence-Berkeley Lab

- What lattice QCD can do to nuclear physics (and what it cannot)
- •Problems in two-baryon systems: large volumes, fine tunings, chiral extrapolations
- Some solutions
- Some simpler systems

Some basic facts on nuclear forces

expected :

isospin symmetric, pion dominated at large distances, non-central

unexplained :

S-waves fine tuned: shallow (virtual) bound states

 $B_{deuteron} \approx 2.2 \,\text{MeV} \qquad \text{as opposed to} \qquad m_{\rho} \approx 790 \,\text{MeV} \\ m_{\pi} \approx 140 \,\text{MeV} \\ a_{s} \approx 20 \,\text{fm} \approx \frac{1}{8 \,\text{MeV}} \qquad \frac{m_{\pi}^{2}}{M} \approx 20 \,\text{MeV}$

All quantitative details

Potential is not well defined: can't measured it on the lattice or anywhere else

Interesting things to compute in the lattice:

0, 1 baryon

- hadron masses
- decay constants
- weak matrix elements
- pion scattering
- ...

2 or more baryons

- NN phase shifts
- decay constants
- pion-nucleon couplings
- •hyperon interactions
- electroweak "exchange currents"
- three-body forces

QCD reduced to quadratures

Path integral can be computed numerically

 $10 \times 10 \times 10 \times 10 \times 8 \times 4 = 10^{6} \text{ dimensions}$ # of space-time # of gluons
computational cost ~ $\left(\frac{L}{b}\right)^{4} \left(\frac{1}{b m_{q}}\right)^{2}$

Quenched "approximation"

no internal quark loops

dominates at large distances Beane & Savage (2003) Minimize lattice points, maximize quark masses, minimize volume

is analytically intractable

Extracting physics from euclidean space : masses are "easy"

$$<0 | \pi(t, \vec{k} = 0) \pi^{\dagger}(0, \vec{k} = 0) | 0 > = \sum_{n} e^{-Ht} < 0 | \pi(0, \vec{0}) | n > < n | \pi^{\dagger}(0, \vec{0}) | 0 >$$

$$\rightarrow e^{-m_{\pi}t} < 0 | \pi(0, \vec{0}) | \pi > < \pi | \pi^{\dagger}(0, \vec{0}) | 0 >$$

$$t \to \infty$$
some operator with quantum numbers of the

lowest energy state with the quantum numbers of the pion

pion, made of quarks and gluons, for instance:

 $\overline{\psi}(0,-\overrightarrow{p})\gamma_5\tau^a\psi(0,\overrightarrow{p})$

Extracting physics from euclidean space : scattering

$$<0|\pi(t,-\vec{k})\pi(t,\vec{k})\pi^{\dagger}(0,-\vec{k})\pi^{\dagger}(0,\vec{k})|0>=\sum_{n}e^{-Ht}<0|\pi(0,-\vec{k})\pi(0,\vec{k})|n \times n|\pi^{\dagger}(0,-\vec{k})\pi^{\dagger}(0,\vec{k})|0>$$

$$\rightarrow e^{-2m\pi} <0|\pi(0,-\vec{k})\pi(0,\vec{k})|\pi\pi at \text{ rest} \times \pi\pi at \text{ rest} |\pi^{\dagger}(0,-\vec{k})\pi^{\dagger}(0,\vec{k})|0>$$

$$t \to \infty$$
uninteresting off-shell amplitude

No scattering from infinite volume euclidean amplitudes (Maiani-Testa "theorem")

Scattering through finite volumes: the "Luscher method" (Marinari, Hamber, Parisi, Rebbi)

one particle

Periodic boundary conditions: box is a torus Energy levels at $E_n = \frac{1}{2M} \left(\frac{2\pi n}{L}\right)^2$

two particles

for L >> a

$$E_{0} = \frac{4\pi a}{ML^{3}} \left[1 - \frac{c_{1}a}{L} + c_{2} \left(\frac{a}{L}\right)^{2} + \cdots \right]$$
$$E_{1} = \frac{4\pi^{2}}{ML^{2}} - \frac{12\tan\delta}{ML^{2}} \left[1 + c_{1}\tan\delta + \cdots \right]$$
phase shift at p=2\pi/L

I=2 $\pi\pi$ scattering

Do we need to fit the deuteron $({}^{1}S_{0})$ in the box ? No, but ...

	$p = \sqrt{ME}$	¹ S ₀ p in	MeV	³ S ₁ p in	MeV
	lattice size (fm)	1 st	2 nd	1 st	2 nd
	100	2.6 i	10.52	45.5i	1.76
	25	13.8i	39.3	45.8i	18.25
	10	39.0i	104	61.3i	83.1
	5	94.4i	224	116i	206
m l	lattice				

need 8-10 fm lattice to extract scattering length

negative and outside the effective range region

P.B., S. Beane, A. Parreno & M. Savage, PLB, 2004

Solution 1: change m_{q_i} match to the 'pionfull' theory and determine low energy constants

Beane & Savage Epelbaum, Meissner, Gloeckle

Hinges on the convergence of the chiral expansion

 $\Lambda\Lambda$, ΛN is less sensitive to quark masses

- Λ is an isoscalar, no one-pion exchange
- no reason to expect fine tuning
- less is known, anything learned is useful

Solution 2: Aharonov-Bohm

add a background magnetic potential coupled to baryon number with zero curl

- smaller boxes
- access to any phase shift from a given lattice size
- only valence quarks need to be twisted

P.B., PLB (2004)

Fukugita *et al.* (1994 !) Quenched, Wilson quarks, Wilson glue action

Very heavy quarks, b=0.14 fm

Conclusion & Prospects

- LQCD won't compute the NN potential
- QCD-nuclear physics connection made through observables and/or EFT low energy constants
- NN is particularly sensitive to quark masses
- Some difficulties of principle were addressed, the hard, numerical work barely touched
- simple systems (Ql-Ql) are useful stepping stones
- hypernuclear physics on the lattice first