

Color Transparent GPDs? or: size does matter

Matthias Burkardt (+Jerry Miller)

burkardt@nmsu.edu

New Mexico State University

Las Cruces, NM, 88003, U.S.A.

Motivation

- color transparency (CT): phenomenon where hadron produced inside nucleus at large momentum transfer experiences little final state interaction
- \hookrightarrow if CT occurs then cross section should should scale $\sim A$
- pert. QCD has been successful in qualitative description of form factors at large Δ_{\perp}^2
- pert. QCD also predicts CT at large Δ^2_+
- exp: no clear evidence for CT @Jlab
- Can GPDs shed some light on physics of form factors and CT? (Can CT shed some light on physics of GPDs?)

Form Factors and Light-Cone Wave Functions

2 partons:

$$F(-\boldsymbol{\Delta}_{\perp}^2) = \int dx \int d^2 \mathbf{k}_{\perp} \psi^*(x, \mathbf{k}_{\perp}) \psi(x, \mathbf{k}_{\perp} + (1-x)\boldsymbol{\Delta}_{\perp})$$

- similar convolution formulas hold for 3 or more partons
- hadron form factor obtained by summing over all Fock components
- In general, large Δ_{\perp} probes behavior of LC w.f. at large \mathbf{k}_{\perp}

$$\hookrightarrow$$
 use pQCD to calculate $\psi(x, \mathbf{k}_{\perp})$

- → pQCD predictions for form factors
- However, for example for x = 0.75 and $\Delta_{\perp}^2 = 4 \, GeV^2$, momentum transfer from active quark to spectator only $(1 x)\Delta_{\perp} = 0.5 \, GeV$
- \hookrightarrow significant contributions to form factor from nonperturbative scales at these values of Δ_{\perp} possible

Generalized Parton Distributions (GPDs)

GPDs are defined as nonforward matrix elements of same operator whose forward matrix elements are the usual PDFs

$$\int \frac{dx^{-}}{2\pi} e^{ix^{-}\bar{p}^{+}x} \left\langle p' \left| \bar{q} \left(-\frac{x^{-}}{2} \right) \gamma^{+}q \left(\frac{x^{-}}{2} \right) \right| p \right\rangle = H(x,\xi,\Delta^{2})\bar{u}(p')\gamma^{+}u(p) + E(x,\xi,\Delta^{2})\bar{u}(p')\frac{i\sigma^{+\nu}\Delta_{\nu}}{2M}u(p)$$

$$\int \frac{dx^{-}}{2\pi} e^{ix^{-}\bar{p}^{+}x} \left\langle p' \left| \bar{q} \left(-\frac{x^{-}}{2} \right) \gamma^{+} \gamma_{5} q \left(\frac{x^{-}}{2} \right) \right| p \right\rangle = \tilde{H}(x,\xi,\Delta^{2}) \bar{u}(p') \gamma^{+} \gamma_{5} u$$
$$+ \tilde{E}(x,\xi,\Delta^{2}) \bar{u}(p') \frac{\gamma_{5} \Delta^{+}}{2M} u(p) \tilde{L}(x,\xi,\Delta^{2}) \bar{u}(p') \frac{\gamma_{5} \Delta^{+}}{2M} u(p)$$

where $\Delta = p' - p$ is the momentum transfer and ξ measures the longitudinal momentum transfer on the target $\Delta^+ = \xi(p^+ + p^{+'})$.

$$\int \frac{dx^{-}}{2\pi} e^{ix^{-}\bar{p}^{+}x} \left\langle p' \left| \bar{q} \left(-\frac{x^{-}}{2} \right) \gamma^{+}q \left(\frac{x^{-}}{2} \right) \right| p \right\rangle = H(x,\xi,\Delta^{2})\bar{u}(p')\gamma^{+}u(p) + E(x,\xi,\Delta^{2})\bar{u}(p')\frac{i\sigma^{+\nu}\Delta_{\nu}}{2M}u(p)$$

- Actually $H = H(x, \xi, \Delta^2, Q^2)$, but will not discuss Q^2 dependence of GPDs today! (will assume $Q^2 > -\Delta^2$)
- \checkmark x is mean long. momentum fraction carried by active quark
- ξ measures longitudinal momentum transfer $\xi = \frac{p^{+'}-p^{+}}{p^{+}+p^{+'}}$
- In general no probabilistic interpretation since initial and final state not the same \longrightarrow interpretation as transition amplitude
- → GPDs provide a decomposition of form factor w.r.t. the momentum fraction (in IMF) carried by the active quark

$$\int \frac{dx^{-}}{2\pi} e^{ix^{-}\bar{p}^{+}x} \left\langle p' \left| \bar{q} \left(-\frac{x^{-}}{2} \right) \gamma^{+}q \left(\frac{x^{-}}{2} \right) \right| p \right\rangle = H(x,\xi,\Delta^{2})\bar{u}(p')\gamma^{+}u(p) + E(x,\xi,\Delta^{2})\bar{u}(p')\frac{i\sigma^{+\nu}\Delta_{\nu}}{2M}u(p)$$

- ▲ Actually $H = H(x, \xi, \Delta^2, Q^2)$, but will not discuss Q^2 dependence of GPDs today! (will assume $Q^2 > -\Delta^2$)
- \mathbf{I} x is mean long. momentum fraction carried by active quark
- ξ measures longitudinal momentum transfer $\xi = \frac{p^{+'}-p^+}{p^++p^{+'}}$
- In general no probabilistic interpretation since initial and final state not the same \longrightarrow interpretation as transition amplitude
- → GPDs provide a decomposition of form factor w.r.t. the momentum fraction (in IMF) carried by the active quark
- \hookrightarrow knowledge of GPDs \Rightarrow better understanding of form factors

Overlap Representation for GPDs

$$H(x,0,-\mathbf{\Delta}_{\perp}^2) = \sum_N \sum_j \int [dx]_N \int [d^2 \mathbf{k}_{\perp}]_N \delta(x-x_j) \Psi_N^*(x_i,\mathbf{k}_{\perp,i}') \Psi_N(x_i,\mathbf{k}_{\perp,i})$$

with

$$\mathbf{k}_{\perp,i}' = \mathbf{k}_{\perp,i} + x_i \Delta_{\perp} \qquad (i \neq j) \qquad \text{and} \quad \mathbf{k}_{\perp,j}' = \mathbf{k}_{\perp,j} - (1 - x_j) \Delta_{\perp}$$
$$[dx]_N = \prod_{i=i}^N dx_i \delta \left(1 - \sum_{i=1}^N x_i \right) \qquad [d^2 \mathbf{k}_{\perp}]_N = \prod_{i=i}^N d^2 \mathbf{k}_{\perp,i} \delta \left(\sum_{i=1}^N \mathbf{k}_{\perp,i} \right)$$

Overlap rep. in principle exact; all higher order effects (DGLAP et al.) included in light-cone wave functions

GPDs allow simultaneous determination of longitudinal momentum and transverse position of partons

$$q(\mathbf{x}, \mathbf{b}_{\perp}) = \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} H(\mathbf{x}, 0, -\mathbf{\Delta}_{\perp}^2) e^{-i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}_{\perp}}$$
$$\Delta q(\mathbf{x}, \mathbf{b}_{\perp}) = \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} \tilde{H}(\mathbf{x}, 0, -\mathbf{\Delta}_{\perp}^2) e^{-i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}_{\perp}}$$

- \mathbf{b}_{\perp} measured relative to the \perp center of momentum $\mathbf{R}_{\perp} \equiv \frac{1}{P^+} \int dx^- d^2 \mathbf{x}_{\perp} \mathbf{x}_{\perp} T^{++}(x) = \sum_i x_i \mathbf{b}_{\perp,i}$
- → width of the \mathbf{b}_{\perp} distribution should go to zero as $x \to 1$, since the active quark becomes the \perp center of momentum in that limit! $H(x, 0, -\mathbf{\Delta}_{\perp}^2)$ must become $\mathbf{\Delta}_{\perp}^2$ -indep. as $x \to 1$. Confirmed by recent lattice studies (QCDSF, LHPC), which compared form factors for 1^{st} , 2^{nd} , and 3^{rd} *x*-moment of $H(x, 0, -\mathbf{\Delta}_{\perp}^2)$

Overlap Representation in Impact Parameter Rep.

$$\Psi_N(x_i, \mathbf{k}_{\perp,i}) = \int [d^2 \mathbf{b}_{\perp}]_N \exp\left[-i \sum_{i=1}^N \mathbf{k}_{\perp,i} \cdot \mathbf{b}_{\perp,i}\right] \tilde{\Psi}(x_i, \mathbf{b}_{\perp,i})$$

with

 \hookrightarrow

$$[d^{2}\mathbf{b}_{\perp}]_{N} = \prod_{i=i}^{N} dx_{i}\delta\left(\sum_{i=1}^{N} \mathbf{b}_{\perp,i}\right)$$

$$q(x, \mathbf{b}_{\perp}) = \sum_{N} \sum_{j} \int [d^2 \mathbf{b}_{\perp}]_N \delta(\mathbf{b}_{\perp} - \mathbf{b}_{\perp,j}) \left| \tilde{\Psi}(x_i, \mathbf{b}_{\perp,i}) \right|^2$$

$$q(x, \mathbf{b}_{\perp}) = \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} H(x, 0, -\mathbf{\Delta}_{\perp}^2) e^{-i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}_{\perp}}$$

GPDs allow simultaneous determination of longitudinal momentum and transverse position of partons

$$q(\mathbf{x}, \mathbf{b}_{\perp}) = \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} H(\mathbf{x}, 0, -\mathbf{\Delta}_{\perp}^2) e^{-i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}_{\perp}}$$
$$\Delta q(\mathbf{x}, \mathbf{b}_{\perp}) = \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} \tilde{H}(\mathbf{x}, 0, -\mathbf{\Delta}_{\perp}^2) e^{-i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}_{\perp}}$$

- \mathbf{b}_{\perp} measured relative to the \perp center of momentum $\mathbf{R}_{\perp} \equiv \frac{1}{P^+} \int dx^- d^2 \mathbf{x}_{\perp} \mathbf{x}_{\perp} T^{++}(x) = \sum_i x_i \mathbf{b}_{\perp,i}$
- → width of the \mathbf{b}_{\perp} distribution should go to zero as $x \to 1$, since the active quark becomes the \perp center of momentum in that limit! $H(x, 0, -\mathbf{\Delta}_{\perp}^2)$ must become $\mathbf{\Delta}_{\perp}^2$ -indep. as $x \to 1$. Confirmed by recent lattice studies (QCDSF, LHPC), which compared form factors for 1^{st} , 2^{nd} , and 3^{rd} *x*-moment of $H(x, 0, -\mathbf{\Delta}_{\perp}^2)$

$q(x, \mathbf{b}_{\perp})$ in a simple model

back

- $\blacksquare q(x, \mathbf{b}_{\perp})$ becomes very narrow for large x
- $\hookrightarrow \text{ conceivable to have significant contribution from large } x \text{ to} \\ F_1(-\boldsymbol{\Delta}_{\perp}^2) = \int dx H(x, 0, -\boldsymbol{\Delta}_{\perp}^2) = \int dx \int d^2 \mathbf{b}_{\perp} q(x, \mathbf{b}_{\perp}) e^{i\mathbf{b}_{\perp} \cdot \boldsymbol{\Delta}_{\perp}}$
- Note: distribution becoming narrow in b_{\perp} does <u>not</u> have to mean the hadron becomes small
 - \mathbf{b}_{\perp} measures distance from active quark to center of momentum $\mathbf{R}_{\perp} = \sum_{i} x_i \mathbf{b}_{\perp,i}$
 - $\hookrightarrow\,$ distance \mathbf{r}_{\perp} between active quark and center of momentum of all spectators given by

$$\mathbf{r}_{\perp} = \frac{1}{1-x} \mathbf{b}_{\perp}$$

example: 2 partons:

$$\mathbf{r}_{\perp} = \mathbf{r}_{\perp,1} - \mathbf{r}_{\perp,2} \qquad \qquad \mathbf{R}_{\perp} = x\mathbf{r}_{\perp,1} + (1-x)\mathbf{r}_{\perp,2}$$

 $\hookrightarrow \mathbf{b}_{\perp} \equiv \mathbf{r}_{\perp,1} - \mathbf{R}_{\perp} = (1-x)\mathbf{r}_{\perp}$

relation between b_{\perp} and the separation r_{\perp} between the active quark and the spectator for a 2-parton system

relation between b_⊥ and the separation r_⊥ between the active quark and the center of momentum of all spectators for a multi-parton system

- $\mathbf{P} \quad q(x, \mathbf{b}_{\perp})$ becomes very narrow for large x
- $\hookrightarrow \text{ conceivable to have significant contribution from large } x \text{ to} \\ F_1(-\boldsymbol{\Delta}_{\perp}^2) = \int dx H(x,0,-\boldsymbol{\Delta}_{\perp}^2) = \int dx \int d^2 \mathbf{b}_{\perp} q(x,\mathbf{b}_{\perp}) e^{i\mathbf{b}_{\perp}\cdot\boldsymbol{\Delta}_{\perp}}$
- Note: distribution becoming narrow in b_{\perp} does <u>not</u> have to mean the hadron becomes small
 - \mathbf{b}_{\perp} measures distance from active quark to center of momentum $\mathbf{R}_{\perp} = \sum_{i} x_i \mathbf{b}_{\perp,i}$
 - $\hookrightarrow\,$ distance \mathbf{r}_{\perp} between active quark and center of momentum of all spectators given by

$$\mathbf{r}_{\perp} = \frac{1}{1-x} \mathbf{b}_{\perp}$$

 $\, \hookrightarrow \, \text{ finite } \bot \text{ size implies }$

$$\frac{\int d^2 \mathbf{b}_{\perp} q(x, \mathbf{b}_{\perp}) \mathbf{b}_{\perp}^2}{\int d^2 \mathbf{b}_{\perp} q(x, \mathbf{b}_{\perp})} \propto (1 - x)^2$$

- Whether or not large x yield a significant contribution to $F_1(-\Delta_{\perp}^2)$ at large Δ_{\perp}^2 depends on details of the shape of $q(x, \mathbf{b}_{\perp})$, such as
 - how rapidly $q(x) = \int d^2 \mathbf{b}_{\perp} q(x, \mathbf{b}_{\perp})$ goes to zero for large x
 - how rapidly $q(x, \mathbf{b}_{\perp})$ becomes narrow for large x
- wave function components where active quark carries momentum fraction x have \perp size larger than

$$d_{\perp}^{2}(x) \equiv \frac{1}{(1-x)^{2}} \frac{\int d^{2}\mathbf{b}_{\perp}q(x,\mathbf{b}_{\perp})\mathbf{b}_{\perp}^{2}}{\int d^{2}\mathbf{b}_{\perp}q(x,\mathbf{b}_{\perp})}$$

Note: commonly used ansatz $\psi(x, \mathbf{k}_{\perp}) \sim f(x) \exp\left(-const.\frac{\mathbf{k}_{\perp}^{2}}{x(1-x)}\right) \text{ would yield}$ $\tilde{\psi}(x, \mathbf{r}_{\perp}) \sim f(x) \exp\left(-c\mathbf{r}_{\perp}^{2}x(1-x)\right), \text{ resulting in a divergent}$ $\perp \text{ size as } x \rightarrow 1.$

Model for GPDs at large x

- at large \(\begin{aligned} & separations, gluon components in wave-function will become significant
- → want to investigate how large size configurations get dynamically suppressed
- represent gluon string in π by one effective degree of freedom with invariant mass $M_s^2 = (\sigma \mathbf{r}_{\perp})^2$
- quarks can interact with ends of "string"

$$M^{2}\psi(x, y, \mathbf{r}_{\perp}) = T\psi(x, y, \mathbf{r}_{\perp}) + G^{2} \int_{0}^{1-y} dx' \frac{\psi(x, y, \mathbf{r}_{\perp}) - \psi(x', y, \mathbf{r}_{\perp})}{(x - x')^{2}} + G^{2} \int_{0}^{1-x} dy' \frac{\psi(x, y, \mathbf{r}_{\perp}) - \psi(x, y', \mathbf{r}_{\perp})}{(x - x')^{2}}$$

where

$$T = \frac{m_q^2}{x} + \frac{m_{\bar{q}}^2}{y} + \frac{\sigma^2 \mathbf{r}_{\perp}^2}{z} + \frac{\mathbf{k}_{\perp}^2}{x + \frac{z}{2}} + \frac{\mathbf{k}_{\perp}^2}{y + \frac{z}{2}}$$

Color Transparent GPDs? - p.17/23

Model for GPDs at large x

- Main result: \perp size $d_{\perp}(x)$ decreases with x but remains finite for $x \rightarrow 1$
- Physics: both kinetic $\frac{\mathbf{k}_{\perp}^2}{y+z/2}$ and potential $\frac{\mathbf{r}_{\perp}^2}{z}$ have divergent coefficients when $x \to 1$
- \hookrightarrow energy minimized if both \mathbf{k}_{\perp} and \mathbf{r}_{\perp} stay finite.
- \checkmark will in the following assume that $d_{\perp}(x)$ remains finite as $x \to 1$

PDFs at large x

nucleon

- (exp.) $q(x) = c(1-x)^{\beta}$, where $\beta \approx 3$
- However, not well enough known for very large x
- pQCD: $q(x) \sim (1-x)^3$, but suppression due to higher order corrections expected at very large x
- → will make ansatz $q(x) = c(1 x)^3$, plus possible correction (suppression) for very large x

Example for $x \to 1$ **contribution to form factor**

■ assume (conjecture) hadron has finite size $1/\Lambda$ even when $x \to 1$

$$\hookrightarrow q(x, \mathbf{b}_{\perp}) = 0 \text{ for } \mathbf{b}_{\perp}^2 > \frac{(1-x)^2}{\Lambda^2}$$

 \hookrightarrow significant contribution to form factor from quarks with $x > 1 - \frac{\Lambda}{|\Delta_{\perp}|}$, where $|\mathbf{b}_{\perp} \cdot \Delta_{\perp}| < 1$

$$F_{large\,x}(\mathbf{\Delta}_{\perp}^{2}) \equiv \int_{1-\frac{\Lambda}{|\mathbf{\Delta}_{\perp}|}}^{1} dx H(x,0,\mathbf{\Delta}_{\perp}^{2}) = \int_{1-\frac{\Lambda}{|\mathbf{\Delta}_{\perp}|}}^{1} dx \int d^{2}\mathbf{b}_{\perp}e^{-i\mathbf{b}_{\perp}\cdot\mathbf{\Delta}_{\perp}}q(x,\mathbf{b}_{\perp})$$
$$= \int_{1-\frac{\Lambda}{|\mathbf{\Delta}_{\perp}|}}^{1} dxq(x) = \frac{c}{4}\frac{\Lambda^{4}}{\mathbf{\Delta}_{\perp}^{4}} \qquad \text{for} \quad q(x) = c(1-x)^{3}.$$

 \hookrightarrow obtain obtain (fake) pQCD-like behavior from $x \to 1$ (Feynman mechanism)

• Note: if
$$q(x) = c(1-x)^{2N_s-1}$$
 up to $x = 1$, this will always yield $F_{large\,x}(\mathbf{\Delta}_{\perp}^2) \propto \frac{1}{\mathbf{\Delta}_{\perp}^{2N_s}}$

Example for $x \to 1$ **contribution to form factor (**x < 1 –

assume (conjecture) hadron has finite size $1/\Lambda$ even when $x \to 1$

$$\hookrightarrow q(x, \mathbf{b}_{\perp}) = 0 \text{ for } \mathbf{b}_{\perp}^2 > \frac{(1-x)^2}{\Lambda^2}$$

 \hookrightarrow significant contribution to form factor from quarks with $1-\varepsilon>x>1-\frac{\Lambda}{|{f \Delta}_\perp|}$

$$F_{large\,x}(\mathbf{\Delta}_{\perp}^{2}) \equiv \int_{1-\frac{\Lambda}{|\mathbf{\Delta}_{\perp}|}}^{1} dx \, H(x, 0, \mathbf{\Delta}_{\perp}^{2}) = \int_{1-\frac{\Lambda}{|\mathbf{\Delta}_{\perp}|}}^{1} dx \int d^{2}\mathbf{b}_{\perp} e^{-i\mathbf{b}_{\perp}\cdot\mathbf{\Delta}_{\perp}} q(x, \mathbf{b}_{\perp})$$
$$= \int_{1-\frac{\Lambda}{|\mathbf{\Delta}_{\perp}|}}^{1-\varepsilon} dx q(x) = \frac{c}{4} \left[\frac{\Lambda^{4}}{\mathbf{\Delta}_{\perp}^{4}} - \varepsilon^{4} \right] \qquad \text{for} \quad q(x) = c(1-x)^{3}$$

still exhibits $\frac{1}{\Delta_{\perp}^4}$ behavior for $\Delta_{\perp}^2 < \frac{\Lambda^2}{\varepsilon^2}$ (That's $\Delta_{\perp}^2 < 16 GeV^2$ for $\Lambda = 0.4 GeV$ and $\varepsilon = 0.1$

 \hookrightarrow obtain (fake) pQCD like behavior from $x \to 1$ (Feynman mechanism)

Implications for form factor, CT,...

- part of what looks like pQCD at a few GeV^2 could perhaps be from different mechanism ($x \rightarrow 1$)
 - requires $q(x) \propto (1-x)^3$ up to $x = 1 \frac{\Lambda}{\Delta_{\perp}}$ as well as a finite \perp size
- → could provide additional eplanation for lack of color transparency at Jlab
- $\therefore x \to 1$ contribution would not become color transparent
- → observation of CT would place constraints on large x behavior of GPDs (M.B.+G.A.Miller, hep-ph/0312190; S.Liuti+S.K.Taneja, hep-ph/0405014)

Summary

- GPDs provide decomposition of form factors w.r.t. the momentum of the active quark
- \hookrightarrow GPDs could clarify mechanism for form factor at large ${f \Delta}_{\perp}^2$
- discussed how hadron confiurations with size $R \sim 1/\Lambda$ can contribute significantly to form factor
- contribution to nucleon form factor can be ~ $\frac{1}{\Delta_{\perp}^4}$ until suppression of PDFs due to higher order corrections sets in
- ← could provide additional explanation for lack of CT @JLab
- Iarge x behavior of PDFs & GPDs critical for contribution from large size configurations to form factor
 - how rapidly does q(x) go to zero as $x \to 1$
 - how does \perp size $\mathbf{d}_{\perp}(x)$ behave for $x \to 1$
- JLab@12GeV could illuminate physics of form factors from three different angles: CT, PDFs@large x, and GPDs.