Properties of hot dense matter from colliding nuclei*

Ulrich Heinz

Department of Physics The Ohio State University 174 West 18th Avenue Columbus, OH 43210

presented at:

PN12 Workshop, JLab, November 1, 2004

*Work supported by the U.S. Department of Energy (DOE)

RHIC Goals:

• Create and study the Quark-Gluon-Plasma

(= thermalized medium of deconfined quarks and gluons in which chiral symmetry is restored, i.e. $\langle\bar\psi\psi\rangle=0)$

• Explore the QCD phase diagram:

⇒ Condensed Matter Physics with Strongly Interacting Particles (QCD instead of QED)

How to measure the properties of the created matter?

- explore its collective behaviour (radial and elliptic transverse flow) thermalization? equation of state? gas or liquid? viscosity? color conductivity?
- study how it affects calibrated hard probes (parton energy loss, JET, J/ψ suppression, charm flow, . . .)
- measure its electromagnetic radiation

Flow – an unavoidable consequence of thermalization:

 $\mathsf{QGP} \Longrightarrow$ an (approximately) thermalized system of quarks and gluons \Longrightarrow thermal pressure gradients \implies collective flow

Radial flow:

- \rightarrow the only type of transverse flow in b = 0 collisions between equal spherical nuclei
- \rightarrow integrates pressure history over entire expansion stage
- ightarrow observable via effect of $\langle v_{\perp}
 angle$ on slope of m_{\perp} spectra

Elliptic flow ($b \neq 0$ or collisions between deformed nuclei, e.g. U+U):

peaks at midrapidity

→ requires spatial deformation of reaction zone at thermalization → magnitude of signal probes degree and time of thermalization → shuts itself off as dynamics reduces deformation (H. Sorge)

 \rightarrow ~ sensitive to Equation of State during first $\sim 5\,{\rm fm}/c$

Directed flow $(b \neq 0, y \neq 0)$:

 \rightarrow

- \rightarrow generated very early while nuclei penetrate each other
- \rightarrow dominated by early non-equilibrium processes
 - becomes weaker with increasing collision energy

Hydrodynamics – the natural tool to study flow:

Relativistic Hydrodynamics: Conservation of energy, momentum and baryon number

$$\partial_\mu \, T^{\mu
u} = 0 \ \partial_\mu \, j^\mu = 0$$

with energy momentum tensor $T^{\mu\nu}(x) = (e(x)+p(x)) u^{\mu}(x)u^{\nu}(x)-g^{\mu\nu}p(x)$ and baryon current $j^{\mu}(x) = n(x) u^{\mu}(x)$

Equation of state:

- EOS I: ultrarelativistic ideal gas, $p = \frac{1}{3}e$
- EOS H: hadron resonance gas, $p \sim 0.15 \, e$
- EOS Q: Maxwell construction between EOS I and EOS H

critical temperature $T_{\rm crit} = 0.164 \; {\rm GeV}$

 \Rightarrow bag constant $B^{1/4} = 0.23 \text{ GeV}$ latent heat $\Delta e = 1.15 \text{ GeV/fm}^3$

Implement exact longitudinal boost invariance for simplicity ($Y \approx 0$ only)

Hydrodynamic description of single-particle spectra:

Centrality and momentum dependence of elliptic flow (STAR, PHENIX, PHOBOS):

Model parameters fixed with π , \bar{p} spectra at b = 0; all other spectra predicted (UH&P.Kolb, hep-ph/0204061).

What is fitted, what is predicted?

Au+Au @ 130 A GeV:

$$\begin{split} \tau_{\rm eq} &= 0.6 \, {\rm fm}/c, \quad e_{\rm max}(b{=}0) = 24.6 \, {\rm GeV/fm}^3, \quad \langle e \rangle (\tau{=}1 \, {\rm fm}/c) = 5.4 \, {\rm GeV/fm}^3 \\ T_{\rm max}(b{=}0) &= 340 \, {\rm MeV}, \qquad T_{\rm chem} = T_{\rm had} = 165 \, {\rm MeV}, \qquad T_{\rm dec} = 130 \, {\rm MeV} \end{split}$$

All fit parameters are fixed in central (b=0) collisions:

- Glauber model \Rightarrow shape of initial transverse entropy and baryon density profiles $s(\mathbf{r}, \tau_{eq}), n_B(\mathbf{r}, \tau_{eq})$ \Rightarrow free parameters $s_0(\tau_{eq}), n_0(\tau_{eq})$, soft/hard fraction
- ullet Measured p/π ratio \Rightarrow fixes n_0/s_0
- ullet Total charged multiplicity $dN_{\rm ch}/dy \Rightarrow$ fixes product $\tau_{\rm eq} \cdot s_0(\tau_{\rm eq})$
- ullet soft/hard fraction \Rightarrow fixed through centrality dependence of $dN_{\rm ch}/dy$
- ullet Shape of π , p spectra \Rightarrow fixes decoupling temperature $T_{
 m dec}$ and radial flow $\langle v_{\perp}
 angle$
- Final radial flow $\langle v_\perp
 angle \Rightarrow$ "fixes" $au_{
 m eq}$ [upper limit] (flow needs time and pressure to develop)
- ullet Equation of State \Rightarrow compute $e_0=e_{\max}(b{=}0),\ T_{\max}(b{=}0)$ from $s_0,\ n_0$

Predictions (no additional parameters!):

- All hadron spectra other than $p, \ \pi$ in $b{=}0$ collisions
- All hadron spectra and elliptic flow coefficients for non-central collisions at any impact parameter

Shortcomings of early hydro calculations (repaired in later versions):

- ullet EOS assumes chemical equilibrium all the way down to $T_{\rm dec}$
- ullet No transverse dynamics before $au_{
 m eq}$

Rest mass dependence of differential elliptic flow (the "fine structure")

STAR Coll., PRL 87, 182301 (2001) and PRL 92, 052302 (2004); PHENIX Coll., PRL 91, 182301 (2003)

Data follow the hydrodynamically predicted rest mass dependence of $v_2(p_{\perp})$ out to $p_{\perp} \sim 1.5 \text{ GeV}$ for mesons and out to $p_{\perp} \sim 2.3 \text{ GeV}$ for baryons \implies bulk of matter (> 99% of all particles) behaves hydrodynamically!

Note: mass-splitting of v_2 ("fine structure") sensitive to EOS!

Breakdown of hydrodynamics at high p_{\perp} : upper limits for the QGP viscosity

- For sufficiently (very) large $\sigma_{
 m el}$, $v_2(p_{\perp})$ from covariant parton transport model MPC follows hydrodynamic curve at low p_{\perp} and reproduces observed saturation at high p_{\perp}
- Similar pattern is seen in viscous hydrodynamics: viscous corrections increase $\sim p_\perp^2$
- v_2 data suggest $\frac{\Gamma_s}{\tau} < 0.1$, close to minimum viscosity $\frac{\eta}{s} = \frac{\hbar}{4\pi}$ (Son et al. 2002)
- More quantitative constraints on η require viscous hydrodynamics code

1.6

p_⊤(GeV)

D. Teaney, PRC 68 (2003) 034913

Why is this important?

- v_2 requires rescattering/reinteractions among produced matter \implies final state \neq initial state
- microscopic studies (Zhang et al. 1999, Molnar & Gyulassy 2002): v_2 is a monotonic function of $\sigma \rho \sim 1/\lambda$; ideal fluid limit reached as $\lambda \to 0$
- v_2 data @ RHIC \approx exhaust hydro limit \implies fast, efficient thermalization
- v_2 needs spatial deformation (rescattering maps ϵ_x onto v_2) \implies sensitive to early collision stage; data require $\tau_{\text{therm}} \leq 1 \text{ fm}/c$ (we use 0.6 fm/c)
- since the hydrodynamic upper limit can only be approached from below and is \approx exhausted by the data, the data provide stringent limits on viscosity and other transport coefficients
- since hydrodynamics works, we can use it to estimate initial energy density and lifetime of the plasma: $e_{\rm init} \simeq (10 20) \times e_{\rm crit}$, $T_{\rm init} \simeq 2 \times T_{\rm crit}$, $\tau_{\rm had} \tau_{\rm therm} \simeq 5 7 \, {\rm fm}/c$
- Theoretically, there exists only one viable concept that fits all of these properties: the QGP.
- RHIC data tell us that the QGP behaves like an almost ideal fluid and must therefore be strongly interacting.

Quark number scaling at intermediate p_{\perp} : coalescence

D. Molnár and S. Voloshin, PRL 91 (2003) 092301

Note: Parton v_2 can be extracted only because it breaks away from hydro at high p_T !

Experimental extraction of parton elliptic flow (I)

J. Castillo (STAR Coll.), nucl-ex/0403027

- Coalescence predictions confirmed for $\pi, K, K_0, p, \Lambda, \Xi$
- RHIC data indicate $v_2^q \approx v_2^s$
- Parton elliptic flow follows hydro to $p_{T,\mathrm{break}} \approx 750 \,\mathrm{MeV}$, saturates at $\approx 7\%$ in min. bias. collisions

Experimental extraction of parton elliptic flow (II)

P. Sorensen (STAR Coll.), J.Phys. G30 ('04) S217

This *parton coalescence* rescaling seems to work for each of our centrality intervals

Note: • Parton v_2 can be extracted only because it breaks away from hydro at high p_{\perp}

• Valence quark number scaling indicates quark deconfinement!

Limits of ideal fluid dynamics: smaller, less dense systems

- $e_{\text{init}} > 10 \,\text{GeV/fm}^3$ needed for v_2 to saturate before hadronization and to exhaust ideal hydro limit!
- hydrodynamics predicts non-monotonic v_2/ϵ : between AGS and RHIC it decreases, due to softening of EOS by quark-hadron transition (Kolb, Sollfrank, UH, PRC 62 (2000) 054909)
- data show instead monotonous increase of v_2/ϵ with $\sqrt{s} \Rightarrow$ the inability of viscous hadronic phase to build elliptic flow kills the phase transition signature!

Breakdown of ideal hydro: the viscous hadron gas fluid

Excitation function of elliptic flow:

Ideal hydro

 $\mathsf{Hydro} + \mathsf{RQMD}$

P. Kolb, J. Sollfrank, U.H., PRC 62 ('00) 054909

D. Teaney, J. Lauret, E. Shuryak, nucl-th/0110037

Hadron resonance gas is very viscous and does not respond strongly to spatial eccentricity \implies non-monotonic behaviour of v_2 resulting from dip in c_s^2 near phase-transition is erased!

The ultimate test of hydrodynamics at RHIC: fully aligned ("zero spectators") U+U at 200 A GeV

A.J. Kuhlman, U.H., in preparation

- $dN_{\rm ch}/d\eta$ in head-on-head collisions pprox 14% larger than in side-on-side collisions
- e_0 in head-on-head U+U collisions $\approx 65\%$ larger than in side-on-side U+U and b=0 Au+Au!
- ϵ_x (side-on-side U+U) $\approx \epsilon_x$ (b=7 fm Au+Au), at 30% higher e_0

Suppression of high p_T hadron production in Au+Au:

M. Gyulassy and I. Vitev, PRL 89 (2002) 252301

Au+Au at $\sqrt{s}=130$ and $200\,A\,{\rm GeV}$

PHENIX Coll., PRL 88 (2002) 022301; PLB 561 (2003) 82

 π^0 0-10% central:

6

8

RAA

2.5

2

1.5

0.5

2

 $\implies \frac{dNg}{dy} = 1000 \pm 200$

No high p_T suppression in d+Au:

- as collision centrality increases, R_{AA} increases in d+Au (Cronin effect) but decreases in Au+Au
- high- p_T suppression absent in d+Au \implies suppression in Au+Au not due to nuclear wavefunction (e.g. CGC) but a final state effect

Jet quenching in central Au+Au collisions:

- away-side jet ($p_T > 2 \,{
 m GeV}$) visible in p+p and d+Au, but fully quenched in central Au+Au
- energy of quenched jet appears as additional multiplicity of low- p_T particles opposite to trigger particle
- \implies "thermalization" of intermediate- p_T jets!

JET: Jet Emission Tomography Path length dependence of parton energy loss:

STAR Coll., nucl-ex/0403018, Quark Matter 2004

- medium opaque for colored particles
- energy loss increases strongly with path length

Chemical Freeze-out at $T_{ m had}\simeq 170\,{ m MeV}$

Central Au+Au @ 130 A GeV

(STAR Coll., G. van Buren, QM2002)

Abundance ratios of stable hadrons decouple in maximum entropy state of "apparent chemical equilibrium" with $T_{\rm chem} \simeq T_{\rm had} \simeq 170 \ {\rm MeV}$

 \implies Need non-equilibrium chemical potentials $\mu_i(T)$ for hadrons i to keep abundance ratios constant at $T < T_{\text{chem}}$.

(R. Rapp, PRC 66 (2002) 017901 T. Hirano, PRC 66 (2002) 054905 D. Teaney, nucl-th/0204023)

Note: Hadron abundances are in statistical, not in kinetic chemical equilibrium! Requires pre-hadronic phase with large strangeness correlation volume.

Chemical vs. kinetic freeze-out: Evidence for a phase transition at $T_{ m had} \simeq 170~ m MeV$

- Kinetic freeze-out temperature $T_{\rm kin}$ and radial flow velocity $\langle \beta_{\perp} \rangle$ depend on collision centrality, but $T_{\rm chem}$ does not!
- Centrality dependence of $T_{\rm kin}$ reflects centrality dependence of hydrodynamic expansion rate $\partial \cdot u$ through kinetic freeze-out criterium:

$$\tau_{i,\text{therm}} = \frac{1}{\sum_{j} \langle v_{ij} \sigma_{ij} \rangle \rho_j}$$
$$\simeq \tau_{\text{exp}} = \frac{1}{\partial \cdot u}.$$

Insensitivity of T_{chem} to collective expansion rate implies immediate chemical decoupling at hadron formation \implies chemical reaction rates must drop precipitously at $T_{\text{chem}} = T_{\text{had}} \iff$ Phase transition at $T_{\text{had}}!$

So what are the properties of the hot dense matter formed at RHIC?

- It's thermalized: elliptic flow, hadron abundances, hadron spectra at $p_\perp < 2\,{\rm GeV}/c$
- It's dense! $\langle e \rangle \approx 20 30 \text{ GeV/fm}^3$ at $\tau_0 = 0.2 \text{ fm}/c$, $\langle e \rangle \approx 10 \text{ GeV/fm}^3$ at $\tau_{\text{therm}} = 0.6 \text{ fm}/c$ (elliptic flow, parton energy loss) \implies matter initially in QGP state.
- It's strongly coupled: $\tau_{\rm therm} < 1 \, {\rm fm}/c$ (elliptic flow) \Longrightarrow not a perturbative quark-gluon gas
- It behaves like an almost ideal fluid with very low viscosity (elliptic flow, hadron spectra)
- It's very opaque to hard colored probes: parton energy loss, JET
- Evidence for deconfinement (indirect): quark-number scaling of v_2 and R_{CP} at intermediate p_{\perp} (quark coalescence)
- Evidence for chiral symmetry restoration (indirect): flavor equilibration of hadron yields, disappearance of the ρ peak in e^+e^- spectra at SPS
- Evidence for a phase transition at $T_{\rm had} \approx 170 \,\text{MeV}$: centrality independence of $T_{\rm chem} = T_{\rm had}$, rest mass dependence of v_2

What else would we like to find out?

- Better constraints on $au_{
 m therm}$ and EOS: precision flow studies and systematics (both theory and expt.)
- Better understanding of the interplay between the hydrodynamic early QGP and viscous late hadronic stages (more hybrid simulations (H2H, . . .))
- Better constraints on QGP transport coefficients of from data: requires more statistics (expt.) and a relativistic viscous hydrodynamic code (thy.)
- Hard evidence for deconfinement: charmonium and bottonium spectroscopy, direct photon spectra, quadratic path length dependence of non-abelian parton energy loss (precision JET)
- Hard evidence for chiral symmetry restoration: low mass dilepton spectra, hadron mass shifts in dense hadronic matter, constraints on chemical reaction rates in QGP phase from direct photons
- Phase transition or rapid cross-over? Event-by-event fluctuations
- Better understanding of QGP thermalization processes: Charm energy loss and flow; detailed exploration of gluon saturation physics ("color glass condensate") ideas at forward rapidities; new theory tools for strongly coupled plasmas; quantum transport theory

Beginning of a program of systematic precision studies of the QGP at RHIC!

Supplements

Radial and elliptic flow from hydrodynamics:

- when do elliptic and radial flow develop?
- how is elliptic flow related to the time-dependent spatial deformation $\epsilon_x = \frac{\langle\!\langle y^2 x^2 \rangle\!\rangle}{\langle\!\langle y^2 + x^2 \rangle\!\rangle}$?
- how do radial and elliptic flow depend on the EOS?
- what is the source deformation at freeze-out?
- is there enough time before freeze-out to change sign of ϵ_x ?

Expansion with non-equilibrium chemical potentials:

T. Hirano, PRC 66 (2002) 054905

- Non-equilibrium hadronic potentials do not alter the equation of state p(e) ⇒ unchanged time evolution of energy density e(τ)
- They do, however, change e(T) \implies same energy density corresponds to
 - $\implies \text{lower temperature} \\ \implies \text{system cools faster}$
- Freeze-out at fixed energy density
 - \implies same time, same flow, but lower temperature

200 A GeV Au+Au spectra and hydrodynamics

- Note: \bullet Hydro does not create enough radial flow already at $T_{\rm c}$ to describe baryon spectra
 - Multistrange baryons seem to fully participate in continued radial flow build-up during late hadronic phase!

Evolution of anisotropies in Au+Au at b = 7 fm

(P. Kolb, J. Sollfrank, U.H., PRC 62 (2000) 054909)

for various initial energy densities $a = 9.0, b = 25, c = 175, d = 25000 \text{ GeV/fm}^{**3}; e = ideal gas limit$

Final spatial eccentricity can be measured with asHBT:

$dN/d\eta$ vs. centrality: Au+Au vs. central U+U

A.J. Kuhlman, U.H., in preparation

