JLab @ 12 GeV

The Nature of Hadron-Hadron Interaction

JLab @ 12 GeV

- Extend 6 GeV: Energy
- Beyond HERMES: Luminosity
- Charm (J/Ψ) and Strange Sectors
 Link with Lattice QCD
- Propagation of Vector Mesons
 Coherence and Formation Lengths
- Exclusive reactions in Few Body Systems – Quasi-Free: On-shell Rescattering of Hadrons (σ_{hN}) – Disintegration at high p_{\perp} : quarks ($\gamma NN \rightarrow NN$)
- Two scales: Q² and *t* (mesons/quarks in hadrons)

ρ^0 electroproduction (II)

- Coherence Length effect can mimic CT signal
- To be safe, one should keep I_c fixed and measures the Q² dependence of T_A

CT in few-body system : Rescattering

- E94-019 CLAS experiment : (e,e'N) and (e,e'NN) on ²H, ³He and ⁴He
- Probability for the projectile to re-interact will be achieved by selecting double scattering kinematics.
- Hadronic picture on solid grounds
- Meson rescattering

Hall A : ³He(e,e'p)d experiment

X=1: quasi-free kinematics

Meson Production in Few Body Systems

- High t selects small transverse size
- Large P_R suppresses quasi-free mechanisms
- Evolution of unitary peaks with *t*: scattering of small objects
- R= Full / quasi-free; P_R = nucleon recoil momentum

Meson Production in Few Body Systems

- High *t*: selects small transverse size
- Expansion time ~ NN distance
- Exclusive experiments select on-shell scattering:
 - Unitary peak
 - On-shell elementary matrix elements
 - Low momentum components of the nuclear wave function
- Small counting rate \Rightarrow JLab!
- Already on solid grounds for ³He,D(e,e'p) (Hall A, Hall B @ 6 GeV)
- JLab @ 12 GeV $\Rightarrow \sigma_{hN}(Q^2, t, ...)$

Photo- vs Electro-production

- Hadronic component of the photon
 - $-\Delta\tau\approx 2\nu/(\textbf{Q}^2+\textbf{m}_{V}{}^2)$
 - ≈ 3.2 fm for a 5 GeV real γ
 - High t \Rightarrow small impact parameter
- $\Delta \tau$ decreases as soon as $Q^2 >> m_V^2$
 - Point like coupling takes over
 - See the "flow" of partons
- 2 hard scales: High t and High Q² (count rate)
 ⇒ From JLab6 to JLab12

ω Meson Electroproproduction (CLAS) $π^0$ Regge Trajectory Exchange

Low t. hadronic Form Factor

$$\frac{d\sigma}{dt} \propto \frac{1}{\left(Q^2 + \Lambda_0^2\right)^2}$$

- High t: coupling to partons $\frac{d\sigma}{dt} \propto flat$
- Data speak for themselves

• Model:
$$F(Q^2, t) = 1/(1 + \frac{Q^2}{\Lambda^2(t)})$$

$$\Lambda(t) = \Lambda_0 \frac{1 + \alpha_\pi(0)}{1 + \alpha_\pi(t)}$$

Open problems

- π in Nuclei?
 - What beyond π content of the nucleon?
 - Two hard scales: Q^2 and t
- Data base for other studies:
 - Already a lot at 6 GeV
 - Modeling with an accuracy of 5% !!!

- 12 GeV?

The Space-Time Structure of Hard Scattering Processes

What could be done at 12 GeV?

Quasi-free A(e,e'p): Extend the Q² range up to 18 GeV²

Is any increase of T_A considered as a non-ambiguous signal of CT ??

CT in few-body system : Rescattering

- E94-019 CLAS experiment : (e,e'N) and (e,e'NN) on ²H, ³He and ⁴He
- Probability for the projectile to re-interact will be achieved by selecting double scattering kinematics.
- 4 The measured ratios are :

 $T=\sigma(e,e'p)^{e\times p}/\sigma(e,e'p)^{PWIA}$

R=odouble/osingle

 $T^{double} = \sigma(e, e'NN)^{e \times p} / \sigma(e, e'NN)^{PWIA}$

ρ^0 electroproduction (I)

Incoherent ρ^{O} electroproduction on nuclei

Detected particles are : Scattered electron and the $\pi^{\scriptscriptstyle +}$ and $\pi^{\scriptscriptstyle -}$ from ρ^0 decay

Finite propagation distance (lifetime) I_c for the qqbar virtual state

 $I_c = 2v/(2M^2 + Q^2)$

M is the mass of qqbar For experimentalist M is the mass of the vector meson produced