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from Ropke and Schell, Prog. Part. Nucl. Phys. 42, 53 (1999)



Why do nuclear lattice simulations?
Nucleon in lattice QCD

~ 0.15 fm



Nucleons as point particles on lattice
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Nuclear Lattice Simulations

Numerous studies of ground state properties of few 
nucleon systems using potential models together 
with variational and/or Green’s function Monte 
Carlo [Wiringa and Pieper, PRL 89 (2002)182501; 
Carlson and Schiavilla, Rev. Mod. Phys. 70 (1998) 
743; etc.]

Also studies of the liquid-gas transition using classical 
lattice gas models [Ray, Shamanna, and Kuo, PLB 
392 (1997) 7]



First study of quantum many body effects in infinite 
nuclear matter on the lattice – quantum hadrodynamics
on momentum lattice [Brockmann and Frank, PRL 68 
(1992) 1830]

First study on spatial lattice at finite temperature (Nuclear 
Lattice Collaboration) [Müller, Koonin, Seki, and van 
Kolck, PRC 61 (2000) 044320]



Simulations with Chiral Effective Theory

Non-perturbative lattice simulations of effective field 
theory of low energy pions and nucleons.

Non-perturbative effective field theory?... but isn’t 
effective field theory based upon an expansion?

For pions the expansion is simple

G G0 G2= + +  …



For nucleons we must take care of infrared singularities
[Weinberg, PLB 251 (1990) 288, NPB 363 (1991) 3]

V = +

G V V V= + + +  …

V0 V2 +  …



We will iterate “everything”
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A complete summation of all diagrams involving 
interaction terms with order  ≤ k



All the lowest-order diagrams are included along 
with counterterms, but we also produce higher-order 
diagrams without the accompanying counterterms.  
So we cannot take the continuum limit.  Instead we 
use

χπ Λ<Λ< cutoffexternal ,mp

We check for cutoff independence in this range.



Our method:
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Following Weinberg [PLB 251 (1990) 288; NPB 363 
(1991) 3], we write the most general local Lagrangian
involving pions and low-energy nucleons
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Weinberg power counting:

We use Hubbard-Stratonovitch transformation for the 
NN contact interaction.

We consider with neutron matter with just neutrons 
and neutral pions
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Operator coefficients

Neutron-neutron contact interaction coefficient  
determined by s-wave zero-temperature scattering phase 
shifts on the lattice

Two possibilities:

Luscher’s formula [Luscher, NPB 354 (1991) 531]

or

Solve lattice Schrodinger equation and find phase shifts 
from asymptotic wavefunctions of scattering states



Lattice Schrödinger Potential



Scattering states on a 3D periodic spatial lattice
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As expected we see significant cutoff dependence

a-1 (MeV) C (MeV-2)
150 -0.40E-4

200 -0.34E-4

250 -0.31E-4

300 -0.29E-4

If pion exchange ignored (i.e., only bubble diagrams), 
we expect C ~ a (lattice spacing)



Space-time lattice
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Break up into spatial zones
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Loop calculations
Neutron self-energy

Pion self-energy



Energy diagrams



Using the second order approximation speeds up 
the calculation of determinants using LU 
decomposition by a factor of 105 – 107 times for 
typical simulations with errors  ~1%.

nt 0 1 2

Free 0.7568 0.5027 0.3444

Loop calc. 0.7453 0.5059 0.3537

Simulation 0.7447(2) 0.5057(3) 0.3537(2)

Temporal neutron correlation (g = 0, Ca2 = -0.135)



Using the second order approximation speeds up 
the calculation of determinants using LU 
decomposition by a factor of 105 – 107 times for 
typical simulations with errors  ~1%.

nt 0 1 2

Free 0.7568 0.5027 0.3444

Loop calc. 0.7496 0.5005 0.3475

Simulation 0.7494(1) 0.5000(1) 0.3472(1)

Temporal neutron correlation (g = 0.750, Ca2 = 0)



Results

D.L., Borasoy, Schaefer, PRC 70 014007









Neutron matter (without pions)

[ ]nnnCndrrdS NNNN
tt

2
1

4
3∫=

No signs or phases, the determinant is positive semi-
definite.  We can use standard Hybrid Monte Carlo.

Sum bubble chain contributions to nucleon-nucleon 
scattering and use Lüscher’s formula to set 
coefficient to give physical s-wave scattering length



Bubble chain

a-1 (MeV) C (MeV-2)
20 -1.86 × 10-4

40 -9.89 × 10-5

60 -6.73 × 10-5

80 -5.10 × 10-5

+ + …

…… +



Various lattice spacings

a = (70 MeV)-1

at = (64 MeV)-1

a = (60 MeV)-1

at = (32 MeV)-1

1 3

a = (80 MeV)-1

at = (72 MeV)-1

a = (60 MeV)-1

at = (48 MeV)-1

2 4



T = 8 MeV



T = 4 MeV

a = (60 MeV)-1

at = (32 MeV)-1



T = 8 MeV



T = 4 MeV

a = (60 MeV)-1

at = (32 MeV)-1



T = 8 MeV

a = (60 MeV)-1

at = (32 MeV)-1



T = 8 MeV

a = (70 MeV)-1

at = (64 MeV)-1



T = 4 MeV

a = (60 MeV)-1

at = (32 MeV)-1



Road map

1.  Symmetric nuclear and neutron matter
without pions

2.  Few body simulations (quenched
simulations)

3.  Algorithm improvement for determinant
phase calculations

4.  Asymmetric nuclear matter without pions
5.  Nuclear and neutron matter with pions
6.  Improved actions
7.  Inequalities?



Accessible by 
nuclear lattice simulations

Accessible by 
lattice QCD
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