Nuclear Lattice Simulations with

Effective Field Theory

Collaborators: Bugra Borasoy – Bonn Univ. Thomas Schaefer – North Carolina State U.

PN12 - JLAB November 2004

Nuclear Lattice Collaboration

# Outline

- 1. Why nuclear lattice simulations?
- 2. Chiral effective theory and lattice methods
- 3. Operator coefficients
- 4. Results for neutron matter with pion
- 5. Results for neutron matter without pion
- 6. Future directions



from Ropke and Schell, Prog. Part. Nucl. Phys. 42, 53 (1999)

# Why do nuclear lattice simulations?

Nucleon in lattice QCD



#### Nucleons as point particles on lattice



# Nuclear Lattice Simulations

Numerous studies of ground state properties of few nucleon systems using potential models together with variational and/or Green's function Monte Carlo [Wiringa and Pieper, PRL 89 (2002)182501; Carlson and Schiavilla, Rev. Mod. Phys. 70 (1998) 743; etc.]

Also studies of the liquid-gas transition using classical lattice gas models [Ray, Shamanna, and Kuo, PLB 392 (1997) 7] First study of quantum many body effects in infinite nuclear matter on the lattice – quantum hadrodynamics on momentum lattice [Brockmann and Frank, PRL 68 (1992) 1830]

First study on spatial lattice at finite temperature (Nuclear Lattice Collaboration) [Müller, Koonin, Seki, and van Kolck, PRC 61 (2000) 044320]

# Simulations with Chiral Effective Theory

Non-perturbative lattice simulations of effective field theory of low energy pions and nucleons.

Non-perturbative effective field theory?... but isn't effective field theory based upon an expansion?

For pions the expansion is simple



For nucleons we must take care of infrared singularities [Weinberg, PLB 251 (1990) 288, NPB 363 (1991) 3]



We will iterate "everything"



A complete summation of all diagrams involving interaction terms with order  $\leq k$ 

All the lowest-order diagrams are included along with counterterms, but we also produce higher-order diagrams without the accompanying counterterms. So we cannot take the continuum limit. Instead we use

$$p_{\text{external}}, m_{\pi} < \Lambda_{\text{cutoff}} < \Lambda_{\chi}$$

We check for cutoff independence in this range.

Our method:

$$N = \begin{bmatrix} p \\ n \end{bmatrix} \otimes \begin{bmatrix} \uparrow \\ \downarrow \end{bmatrix}$$

Following Weinberg [PLB 251 (1990) 288; NPB 363 (1991) 3], we write the most general local Lagrangian involving pions and low-energy nucleons

$$D \equiv 1 + \pi_i^2 / F_\pi^2$$

$$S = S_{\pi\pi} + S_{\overline{N}N} + S_{\pi\overline{N}N} + S_{\overline{N}N\overline{N}N} + S_{\pi\pi\overline{N}N} + \cdots$$

$$S_{\pi\pi} = \int d^{3}\vec{r} dr_{4} \left[ \frac{D^{-2}}{2} \left( \frac{\partial \pi_{i}}{\partial r_{4}} \right)^{2} + \frac{D^{-2}}{2} \left( \vec{\nabla} \pi_{i} \right)^{2} + \frac{D^{-1}}{2} m_{\pi}^{2} \pi_{i}^{2} \right]$$

$$S_{\overline{N}N} = \int d^{3}\vec{r}dr_{4} \left[ N^{\dagger} \frac{\partial N}{\partial r_{4}} - N^{\dagger} \frac{\vec{\nabla}^{2}N}{2m_{N}} + (m_{N} - \mu)N^{\dagger}N \right]$$

$$S_{\pi \overline{N} N} = \int d^{3} \vec{r} dr_{4} \Big[ D^{-1} g_{A} F_{\pi}^{-1} N^{\dagger} \big( \tau_{i} \vec{\sigma} \cdot \vec{\nabla} \pi_{i} \big) N \Big]$$
$$S_{\overline{N} N \overline{N} N} = \int d^{3} \vec{r} dr_{4} \Big[ \frac{1}{2} C_{s} N^{\dagger} N N^{\dagger} N + \frac{1}{2} C_{t} N^{\dagger} \vec{\sigma} N \cdot N^{\dagger} \vec{\sigma} N \Big]$$
$$S_{\pi \pi \overline{N} N} = \int d^{3} \vec{r} dr_{4} \Big[ i D^{-1} g_{A} F_{\pi}^{-2} N^{\dagger} \tau_{i} \Big( \varepsilon_{ijk} \pi_{j} \frac{\partial \pi_{k}}{\partial r_{4}} \Big) N \Big]$$

Weinberg power counting:

$$\Delta = \#\partial + \frac{\#f}{2} - 2$$

We use Hubbard-Stratonovitch transformation for the *NN* contact interaction.

We consider with neutron matter with just neutrons and neutral pions

# **Operator coefficients**

Neutron-neutron contact interaction coefficient determined by s-wave zero-temperature scattering phase shifts on the lattice

Two possibilities:

Luscher's formula [Luscher, NPB 354 (1991) 531]

or

Solve lattice Schrodinger equation and find phase shifts from asymptotic wavefunctions of scattering states

# Lattice Schrödinger Potential



#### Scattering states on a 3D periodic spatial lattice



As expected we see significant cutoff dependence

| $a^{-1}$ (MeV) | C (MeV <sup>-2</sup> ) |
|----------------|------------------------|
| 150            | -0.40E-4               |
| 200            | -0.34E-4               |
| 250            | -0.31E-4               |
| 300            | -0.29E-4               |

If pion exchange ignored (i.e., only bubble diagrams), we expect  $C \sim a$  (lattice spacing)



Break up into spatial zones



# Loop calculations

Neutron self-energy



Pion self-energy



#### Energy diagrams



Temporal neutron correlation ( $g = 0, Ca^2 = -0.135$ )

| n <sub>t</sub> | 0         | 1         | 2         |
|----------------|-----------|-----------|-----------|
|                |           |           |           |
| Free           | 0.7568    | 0.5027    | 0.3444    |
| Loop calc.     | 0.7453    | 0.5059    | 0.3537    |
| Simulation     | 0.7447(2) | 0.5057(3) | 0.3537(2) |

Temporal neutron correlation (g = 0.750,  $Ca^2 = 0$ )

| n <sub>t</sub> | 0         | 1         | 2         |
|----------------|-----------|-----------|-----------|
|                |           |           |           |
| Free           | 0.7568    | 0.5027    | 0.3444    |
| Loop calc.     | 0.7496    | 0.5005    | 0.3475    |
| Simulation     | 0.7494(1) | 0.5000(1) | 0.3472(1) |

#### Results



D.L., Borasoy, Schaefer, PRC 70 014007







Neutron matter (without pions)

$$S_{\overline{N}N\overline{N}N} = \int d^{3}\vec{r}dr_{4} \Big[ \frac{1}{2} Cn^{\dagger}nn^{\dagger}n \Big]$$

No signs or phases, the determinant is positive semidefinite. We can use standard Hybrid Monte Carlo.

Sum bubble chain contributions to nucleon-nucleon scattering and use Lüscher's formula to set coefficient to give physical s-wave scattering length

### Bubble chain



| $a^{-1}$ (MeV) | C (MeV <sup>-2</sup> )   |
|----------------|--------------------------|
| 20             | $-1.86 \times 10^{-4}$   |
| 40             | -9.89 × 10 <sup>-5</sup> |
| 60             | $-6.73 \times 10^{-5}$   |
| 80             | $-5.10 \times 10^{-5}$   |

Various lattice spacings

1 
$$a = (60 \text{ MeV})^{-1}$$
  
 $a_t = (32 \text{ MeV})^{-1}$   
3  $a = (70 \text{ MeV})^{-1}$   
 $a_t = (64 \text{ MeV})^{-1}$ 

2 
$$a = (60 \text{ MeV})^{-1}$$
  
 $a_t = (48 \text{ MeV})^{-1}$   
 $a_t = (72 \text{ MeV})^{-1}$ 















# Road map

- 1. Symmetric nuclear and neutron matter without pions
- 2. Few body simulations (quenched simulations)
- 3. Algorithm improvement for determinant phase calculations
- 4. Asymmetric nuclear matter without pions
- 5. Nuclear and neutron matter with pions
- 6. Improved actions
- 7. Inequalities?

