Quark Energy Loss – Experimental

Jen-Chieh Peng

University of Illinois at Urbana-Champaign

Workshop on "Physics of Nuclei with 12 GeV Electrons" Jefferson Lab, November 1- 5, 2004

<u>Outline</u>

- Quark energy loss in the Drell-Yan experiments
 - Proton induced Drell-Yan (pA $\rightarrow \mu^+\mu^-X$)
 - Pion induced Drell-Yan ($\pi A \rightarrow \mu^+ \mu^- X$)
- Quark energy loss in the semi-inclusive DIS $-eA \rightarrow e'hX$
- Quark energy loss in single hadron production
- Current status and future prospects

Quark Bremsstrahlung in Nuclear Medium

- Landau-Pomeranchuk-Migdal (LPM) effect of medium modification for electron bremsstralung has been observed
- LPM effect in QCD remains to be identified
- Quark energy loss dE/dx is predicted to be proportional to L
- Enhanced quark energy loss in traversing quark-gluon plasma

Quark energy loss in cold nuclei needs to be better measured

Quark energy loss in cold nuclei from the Drell-Yan process

- Energy loss of the incident quark is reflected in the reduced longitudinal momentum and the increased transverse momentum of the lepton pair.
- Measure the amount of quark energy loss by varying the quark pathlength, i.e., by varying the nuclear size, A.
- The challenge is to isolate the quark energy loss effect from other nuclear effects (shadowing, EMC effects, etc.)
- Advantage of D-Y is that lepton-pairs do not have final-state interactions.

Quark energy loss from proton-induced Drell-Yan $\sigma_{DY}(p+A) = A^{\alpha}\sigma_{DY}(p+p)$

 $pA \rightarrow \mu^+ \mu^- x$

- α for integrated Drell-Yan cross section is consistent with 1.
- Need to measure α as a function of longitudinal momentum ($\alpha(x_1)$ or $\alpha(x_F)$) to identify quark energy loss effect.
- α (p_T) suggests that α increases gradually with p_T.

(Ito et al. PRD23 (1981) 604)

A-dependence of Drell-Yan from 800 GeV pA interaction at Fermilab (E772 + E866)

Quark energy loss deduced from Drell-Yan

Large x_F corresponds to large x_1 and small x_2 ($x_F = x_1 - x_2$)

Is the observed A-dependence at large x_F due to quark energy loss or due to nuclear shadowing at small x_2 ? 7

A-dependence Drell-Yan data from Fermilab E866

E866 measures Drell-Yan data for p+W, p+Fe, and p+Be, covering smaller x2 and larger x1 than E772

Solid curves use nuclear shadowing parametrization of EKS98 and no quark energy loss

Analysis of E866 A-dependence Drell-Yan

How reliable is the shadowing parametrization used in this analysis?

Is Nuclear Shadowing the same is Drell-Yan as in DIS?

Kopeliovich et al. predict different shadowing for DY and DIS using light-cone dipole epproach

DIS data can be well reproduced

- Shadowing alone can not explain the DY data $dE/dz = 2.73 \pm 0.7 GeV/fm$
- Quark energy loss is required

Quark Energy Loss with D-Y at Lower Energies

Correspond to larger x2, no nuclear shadowing

Fractional energy loss is larger at 50 GeV

Possible to test the LPM effect from the A-dependence

• Isospin correction required for $\sigma (\pi^2 + Pt) / \sigma (\pi^2 + p)$

12

Pion-induced Drell-Yan experiments $\sigma_{DY}(\pi^- + W)/\sigma_{DY}(\pi^- + D)$ at 140 and 286 GeV

(NA 10 data, ~11,000 π + D D-Y events and ~ 80,000 π +W D-Y events)

Clear suppression at large x1

• Would be interesting to analyse these data to deduce the quark energy loss

Phys. Lett. 193 (1987) 368

NA10 observes clear p_T dependence in π -A Drell-Yan

- Quark bremsstrahlung could contribute to pTbroadening
- Nuclear shadowing effect can not lead to pT broadening
- Another means to distinguish quark energy loss from shadowing

Phys Letts. 193 (1987) 373

 $< p_T^2 >_W - < p_T^2 >_D = 0.15 \pm 0.04 GeV^2 / c^2$ at 286 GeV $< p_T^2 >_W - < p_T^2 >_D = 0.16 \pm 0.04 GeV^2 / c^2$ at 140 GeV

Similar p_T – dependence is also observed in p+A Drell-Yan

E866

Similar but much more pronounced effects for J/ Ψ and Ψ ' nuclear production

 $p + A \rightarrow J/\Psi$ or Ψ ' at $s^{1/2} = 38.8 \text{ GeV}$

 $\alpha(x_F)$ is largely the same for J/ Ψ and Ψ ' (except at $x_F \sim 0$ region)

'Universal' behavior for $\alpha(p_T)$ (similar for J/ Ψ , Ψ '; weak s^{1/2} dependence)

3

Quark energy loss from semi-inclusive DIS

- No initial-state interaction
- Energy loss of quarks and hadrons in nuclei
- Need to avoid the target fragmentation region
- Complementary to Drell-Yan

Kinematic variables in SIDIS

Rough correspondence between Drell-Yan and SIDIS

Drell-Yan	SIDIS
E _{beam}	\mathcal{V}
X_1	Z
$p_{_T}$	p_{T}

Dependence of SIDIS on z

Similar to the X1dependence in Drell-Yan !

Dependence of SIDIS on $\boldsymbol{\nu}$

Larger suppression at lower v

Similar to expected beam energy dependence in Drell-Yan?

P_T-dependence of SIDIS

Again, analogous to Drell-Yan p_T dependence!

Dependence on hadron species

- Clearly show that both the quark and the hadron contribute to the energy loss
- Will pion-induced Drell-Yan be different from the protoninduced Drell-Yan?

Quark Energy Loss in Cold Nuclei

Semi-inclusive DIS (PRL 89 (2002) 162301)

Drell-Yan (PRL 86 (2001) 4483)

Opportunities of quark energy loss study at 12 GeV

- Study the dependence of v
- Detailed A-dependence measurement to check A^{1/3} or A^{2/3} dependence.
- Centrality tagging

Studies of d-Au collisions at RHIC

 σ (d+Au) / σ (p+p) from BRAHMS at s^{1/2}=200 GeV

- Enhancement at large p_T
- Suppression at large rapidity

Very similar to what have been observed in Drell-Yan and SIDIS !

How to measure A-dependence without changing target (or beam)?

collision using multiplicity information ²⁶

Similarity of d+Au / p+p ratios and the R_{CP}

R_{CP} : Ratio of Central / Peripheral d+Au collision

Centrality measurement can be done at CLAS using BONUS !

Did RHIC observe the hadron species dependence in d+Au collsion?

28

Summary

- A unified picture is starting to emerge from the study of quark energy loss in Drell-Yan, SIDIS, and hadron production in d+Au collision. The 12 GeV upgrade provides an opportunity to further study the SIDIS.
- Future Drell-Yan, SIDIS, and p-A data will provide quantitative information on the propagation and hadronization of quarks in cold and hot nuclear medium.