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Motivations & Perspectives

• The standard model of Few-Nucleon Systems, where nucleon

and pion degrees of freedom are taken into account, is

already at a very sophisticated stage, and many efforts are

presently carried on in order to retain all the general

principles compatible with a theory where a fixed number of

constituents is acting.

• On top of this, to include relativity (as much as possible)

represents an important goal, in view of the fact that i) the

underlying theory is a local relativistic field theory, after all,

and ii) the extraction of unambiguous signatures beyond the

standard model of Few-Nucleon Systems could be affected

by relativistic effects.

• The field theoretical approaches based on the Bethe-Salpeter

equations have been highly developed for two-nucleon

system (Tjon, Gross,...), in particular within the so-called

quasi-potential approximation, and for the trinucleon system

many efforts are in progress.
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F Aim : to construct a relativistic approach for Few-Nucleon

System that i) retains all the successful phenomenology already

developed and ii) includes, in a non perturbative way, relativistic

features, requested by Poincaré covariance, and ...iii) allows one

affordable calculations.

FF A role for antinucleons ?

F FF Tool: Electron scattering by Few-nucleon Systems

Caveats: isobar configurations, MEC ....
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Em Responses of 3 ~He

within Plane Wave Impulse Approximation

Aim: to extract the neutron magnetic form factor, Gn
M

F A first step: relativistic kinematics and a relativistic one-body

current

• Relativistic kinematics, but no Wigner Functions for boosting

initial and final wave functions of the three-nucleon system

〈j′, j′z; ε′int, α
′
i,q|Jµ

IA(0)|1
2
, jz; εint, αi,0〉 =

= 3

∫

dk1dk2〈j′, j′z; ε′int, α
′
i|k′1,k2〉 ← (excited state)

× 〈q + k1|Jµ
1,free(0)|k1〉 ← (1b− current)

× 〈k1,k2|
1

2
, jz; εint, α〉 ← (bound state)

• Relativistic electron-nucleon cross section→ cc1 by T. De

Forest, NPA 392, 232 (1983)

• Bound state of 3He→ variational solution of the Schrödinger

Equation by Kievsky, Rosati, Viviani, Nucl. Phys. A 577

(1994) 511.
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• Excited state of the three-nucleon system is approximated by

(this is the core of the Plane Wave Impulse Approximation !)

|j′, j′z; ε′int, α
′;q〉 →

1√
3
|pf , σfτf 〉|j23µ23, π23, T23τ23, ε23;P23〉

where

– pf + P23 = q

– |pf , σfτf 〉 ≡ Plane wave describing the struck nucleon

– |j23µ23, π23, T23τ23, ε23;P23〉 ≡ fully-interacting

two-body wave function (describing the spectator pair)

– terms that properly antisymmetrize the three-nucleon

wave function are dropped out, and only the direct

interaction between the virtual photon and the struck

nucleon is taken into account
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~e +3 ~He→ e′ + X

A = σ(↑→)−σ(↑←)
σ(↑→)+σ(↑←)

θ∗ = 00 → AT ′
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� ≡ TJLAB data (After Xu et al , PRC 67 (2003) 012201)

Solid lines: Bochüm calculations with fully-interacting three-nucleon w.f.

+ two-body currents, non-relativistic kinematics and not relat. σeN

Dashed lines: Rome-Pisa PWIA + relativistic kinematics and relat. σeN

(NN int.: AV18, Wiringa, Smith and Ainsworth, PRC 29, 1207 (1984))
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Neutron Magnetic Form Factor

from the exp. transverse asymmetry of 3 ~He

The extraction of Gn
M (Q2) from the exp. transverse asymmetry of

3 ~He needs many efforts for achieving a good description of the

nuclear structure, (e.g. FSI, relativity, etc), but also dynamical

two-body currents...

(After Xu et al , PRC 67 (2003) 012201)

The model dependence could be investigated in more detail, once

other calculations will be available.
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Relativistic Hamiltonian Dynamics: a flash

• A reasonable compromise: i) fulfilling Poincaré covariance in

a non perturbative way; ii) embedding the whole successful

nonrelativistic phenomenology; iii) affordable numerical

calculations; iv) fixed number of constituents; v) large class

of permissible interactions.

After S.J. Brodsky, H.C. Pauli and S.S Pinsky, Phys. Rep. 301, 299 (1998).

• Dirac proposed three forms for the the so-called Relativistic

Hamiltonian Dynamics: Instant Form, Front Form or

Light-Front Form (most widely adopted, since→ light-cone

DIS ), Point Form (Dirac, Rev. Mod. Phys. 21 (1949) 392)
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• Symmetries of the ”initial” hypersurface: the properties of

invariance of the hypersurface, where the interacting system

is ”sitting” at τ = 0 (τ is the variable that labels the evolution

of the system under the action of a Hamiltonian operator,

containing the interaction) allows one to separate the 10

generators of the Poincaré group in two sets: the kinematical

generators (that leave the initial hypersurface unchanged) and

the dynamical ones.

• Explicit construction of 10 generators, given the mass of the

interacting system, (see the Bakamjian-Thomas approach PR

92 (1953) 1300)

• Cluster separability can be implemented→ macroscopic

locality, instead of the microscopic one (e.g. N.N. Sokolov

Dokl. Akad. Nauk. 233 (1977) 575)

• All the constituents are on their own mass shell (sharp

difference from the explicitly covariant theory, more

familiar...) This on-mass-shell constraint allows one to define

intrinsic variables as in the non relativistic case.

Summarizing : RHD rigorously fulfills the Poincaré covariance

and, in some sense, falls between non-relativistic quantum

mechanics and local relativistic field theory
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Deuteron em observables

in the Light-Front Hamiltonian Dynamics

In a Breit frame where

q⊥ = 0 ⇒ q
+ 6= 0

the matrix elements of the em current operator for the Deuteron,

only |NN〉 state, can be defined in terms of the one-body, free

current

jµ(K~ez) =
J µ(K~ez)

2
+ Lµ

ν [rx(−π)] eıπSx
J ν(K~ez)

∗

2
e−ıπSx

with

J+(K~ez) = J−(K~ez) = 〈~P⊥ = 0, P
′+|ΠJ+

free(0)Π| ~P⊥ = 0, P+〉
~J⊥(K~ez) = 〈~P⊥ = 0, P

′+|Π ~Jfree⊥(0)Π| ~P⊥ = 0, P+〉

Π ≡ projector onto the subspace of the deuteron bound state |χ1〉
of mass MD and spin 1,

Jµ
free(0) =

∑

i Jµ
pi(0)(1 + τ3)/2 + Jµ

ni(0)(1 + τ3)/2 with

Jµ
N = −F2N (pµ + p′µ)/2M + γµ(F1N + F2N )

Such a definition allows one to construct a current operator Jµ for

the Deuteron that fulfills Poincaré, parity and time reversal

covariance, together with hermiticity and the continuity

equation.(F. Lev, E. Pace, G.S. Nucl. Phys. A 641, 229 (1998)).

The core of the problem: Implementing the Poincaré covariance

for Jµ amounts to implementing a rotational covariance for jµ.
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Magnetic moment (in nuclear magnetons) and quadrupole

moment (in fm2) for the Deuteron; PD is the D-state

percentage. LPS PRL 83 (1999) 5250

Interaction PD µNR
D µLFD

D QNR
D QLFD

D

CD-Bonn 4.83 0.8523 0.8670 0.2696 0.2729

Nijm1 5.66 0.8475 0.8622 0.2719 0.2758

RSC93 5.70 0.8473 0.8637 0.2703 0.2750

Av18 5.76 0.8470 0.8635 0.2696 0.2744

Exp. 0.857406(1) 0.2859(3)
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RSC93 NN interaction + Gari-Krümpelmann nucleon f. f.

Solid line: full result with the Poincaré covariant current operator, in the

Breit frame where q⊥ = 0

Long-dashed line: nonrelativistic result in the same Breit frame.

Dashed line: the argument of the Nucleon ff’s, (p′1 − p1)2 → −Q2.
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RSC N − N interaction + Gari-Krümpelmann nucleon f. f.

Solid line: full result with the Poincaré covariant current operator in the

Breit frame where q⊥ = 0 .

Long-dashed line: nonrelativistic result in the same Breit frame.

Dashed line: the argument of the Nucleon ff’s, (p′1 − p1)2 → −Q2.

(After LPS PRC 62 (2000) 064004.)
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F n
2 (x)/F p

2 (x)

in the Light-Front Hamiltonian Dynamics

In the DIS region, the reaction

e +2 H→ e′ + X

could represent a suitable tool for extracting the neutron structure

function, F n
2 (x), from the Deuteron structure function, F D

2 (x).

To take under control the model dependence of the extraction

method, one should study the relativistic effects, besides the

presence of isobar configuration and non standard effects, like,

e.g., a 6-quark bag.

In the Bjorken limit, the Deuteron structure function can be

approximated in a convolution model as follows

F D
2 (x) =

∫ MD/M

x

[F p
2 (x/z) + F n

2 (x/z)]fD(z)dz

where x = Q2/(2Mν), M =nucleon mass and MD =deuteron

mass.

The distribution fD(z) describes the distribution probability to

find a nucleon with light-front momentum z
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F In the usual approach, based on the impulse approximation and

an instant-form framework, the distribution f D(z) has the

following expression

fD
IF (z) =

∫

d~p nD(|~p|) δ
(

z − p · q
Mν

)

z C

nD(|~p|) ≡ the nucleon momentum distribution inside the

Deuteron, C a normalization factor, q ≡ (ν, ~q), and p the

four-momentum of an off-mass shell nucleon, i.e., p ≡ (p0, ~p)

with p0 = MD −
√

M2 + |~p|2. (see, e.g., Frankfurt and Strikman

PLB 183B (1987) 254, Ciofi and Liuti PRC 41 (1990) 110)

FF Within the Light-Front Hamiltonian Dynamics, the

distribution fD(z) reads as follows

fD
FF (z) =

∫

d~k nD(|~k|) δ

(

z − ξ
MD

M

)

where ξ = p+/P+ = (

√

M2 + |~k|2 + kz)/2

√

M2 + |~k|2 .

(see also Oefelke, Sauer and Coester NPA 518 (1990) 593)

FFF It has been proposed to extract the ratio

r(x) = F n
2 (x)/F p

2 (x) from the experimental data for the

Deuteron structure function, F Dexp
2 (x), by the following

recurrence relation

r(n+1)(x) =
F Dexp

2 (x)[1 + r(n)(x)]
∫ MD/M

x
[1 + r(n)(x/z)]F p

2 (x/z)fD(z)dz
− 1

Let see the effects ⇒ ....
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AV 18 NN interaction and the model of Aubert et al for the

nucleon structure functions
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Dashed lines - F D
2 (x) from the standard approach:

Solid lines - F D
2 (x) from Light-Front calculations:

fD
FF (z) =

∫

d~k nD(|~k|) δ
(

z − ξ MD

M

)

fD
IF (z) =

∫

d~p nD(|~p|) δ
(

z − p·q
Mν

)

z C

r(x) = F n
2 (x)/F p

2 (x)

(After E. Pace, G.S. nucl-th/0106004 and Pace, Kievsky, Scopetta,S. PRC

C64 (2001) 055203)
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Trinucleon , |NNN〉, em form factors

in the Light-Front Hamiltonian Dynamics

Ingredients

F A Breit frame where

q⊥ = 0 ⇒ q
+ 6= 0

FF A Poincaré covariant current

jµ(K~ez) =
J µ(K~ez)

2
+ Lµ

ν [rx(−π)] eıπSx
J ν(K~ez)

∗

2
e−ıπSx

with

J+(K~ez) = J−(K~ez) = 〈~P⊥ = 0, P
′+|ΠJ+

free(0)Π| ~P⊥ = 0, P+〉
~J⊥(K~ez) = 〈~P⊥ = 0, P

′+|Π ~Jfree⊥(0)Π| ~P⊥ = 0, P+〉

Π ≡ projector onto the subspace of a trinucleon bound state |χ 1

2

〉
of mass MT and spin 1/2,

Jµ
free(0) =

∑

i Jµ
pi(0)(1 + τ3)/2 + Jµ

ni(0)(1 + τ3)/2 with

Jµ
N = −F2N (pµ + p′µ)/2M + γµ(F1N + F2N ).

FFF A trinucleon bound state, obtained through a variational

technique by Kievsky, Rosati, Viviani (NPA 577 (1994) 511) with

AV18.
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Preliminary calculation with only S+S’ waves:

PS(Av18) = 90.1% PS′(Av18) = 1.29%

Trinucleon magnetic moments

Theory 3He 3H

NR(S) -1.723 2.515

LFD(S) -1.778 2.597

NR(S+S’) -1.707 2.518

LFD(S+S’) -1.759 2.652

Exp. -2.1276 2.9789
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Charge and Magnetic form factors of 3H and 3He

For the first time in LFD !
Only S+S’ waves + AV18 + Gari-Krümpelmann nucleon form factors
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Solid line: LFD calculation in a Breit frame where q⊥ = 0

Dotted line: non relativistic calculation.In cartesian coordinates,

the chosen frame corresponds to a Breit frame where q̂z = êz .
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Z-diagram for a mock Deuteron

Besides the important issues represented by MEC & Isobar

contributions another relevant topic to be explored is the so-called

Z-diagram or pair term contribution (NN̄ ).

This amounts to explore the em observables in a framework

beyond the Poincaré covariance, focusing on the contribution from

antinucleons. E.g.

|D〉 = |NN〉 + |NN NN̄〉 + other Fock states

A simple framework to start such an investigation is represented

by the Mandelstam formalism applied to the Deuteron form

factors.

The Mandelstam formalism is a fully covariant formalism.

Therefore we can calculate the observables in any reference frame

we like, but we should be aware that the probability of the Fock

states can change from a reference to another.

A remark: the study of the Z-diagram is fundamental for

describing the em properties of Hadrons in the timelike region.

Could this produce synergies between the spacelike and timelike

communities in the next future?
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The field theoretical approach proposed by Mandelstam for the

matrix elements of the em current, when the target is a bound

state, reads

〈P ′|jµ|P 〉 = − ı

∫

d4p

(2π)4
Λ∗(p, P ′) Λ(p, P ) ×

Tr[S(p)V†(p, P ′)S(p− P ′)ΓµS(p− P )V(p, P )]

Γµ ≡ the photon vertex. Taken bare in this preliminary

calculation

S(p) ≡ the constituent (fermion) propagator

S(p) =
/p + m

p2 −m2 + ıε
.

For a 3S1-Deuteron with mass MD , V ≡ constituent-system

vertex,

Vµ = γµ − MD

2

pµ + p′µ

PD · p + MDm− ıε

Only γµ in this preliminary calculation. Λ(p, P ) ≡ the

momentum dependence of the constituent-system vertex (in a

dynamical model it should be obtained through a Bethe-Salpeter

equation). (Note that Λ(p, P ) is expected to regularize the

integral).

A more general expression for the Bethe-Salpeter vertex could be

used, viz

Vµ Λ(p, P )→
∑

i

Vµ
i Λi(p, P )
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The Mandelstam formula leads to the following picture for the

elastic scattering in a reference frame where

q
+ 6= 0
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Diagram (a)⇒ Triangle contribution or spectator pole

contribution. Within the Light-Front Hamiltonian Dynamics, this

diagram is approximated by using a Deuteron wave function

(|NN〉 only) instead of adopting a Bethe-Salpeter vertex function.

Diagram (b)⇒ Z-diagram or pair contribution

The Z-diagram effects could be theoretically investigated by

analyzing the experimental elastic form factors of the Deuteron, at

high momentum transfer (Q2 > 1 (GeV/c)2) in a Breit frame

where

q⊥ = 0 ⇒ q
+ 6= 0

(de Melo, Frederico, Pace, G.S, work in progress)
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The macroscopic form factors, G0(Q
2), G1(Q

2), G2(Q
2) are

defined through the macroscopic current

〈S′z1, Pf |Jµ|Pi, 1Sz〉 = ε′∗α εβ ×
{

(P µ
f + P µ

i )

[

F0(Q2)gαβ − qαqβ

2M2
D

F2(Q2)

]

−F1(Q2) (qα gβµ − qβ gαµ)

}

where Q2 = −q · q. Then

G0(Q2)√
1 + η

= GC(Q2) =

= −F0(Q2) − 2η

3

[

F0(Q2) + (1 + η)F2(Q2) + F1(Q2)
]

G1(Q2)√
1 + η

= GM (Q2) = F1(Q2)

G2(Q2)√
1 + η

=
2

3

√
2η GQ(Q2) =

= −2

3

√
2η

[

F0(Q2) + (1 + η)F2(Q2) + F1(Q2)
]

with η = Q2/4M2
D .

The standard definition for the magnetic moment and the quadrupole one

µD =
mp

MD
GM (0)

QD = GQ(0)
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Conclusions

In order to construct a Standard Model for Few-Nucleon Systems

it is necessary to take into account relativistic effects

• We have analyzed the em observables for two and

three-nucleon systems within the Light-Front Hamiltonian

Dynamics, in order to take profit of the successful

phenomenology developed for Few-Nucleon Systems

• We have started a systematic analysis of the pair contribution

to the em processes

• Aim: i) to develop a phenomenological guidance for more

fundamental approaches; ii) to explore the model dependence

in the extraction of non standard effects in Few-Nucleon

Systems
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