Experimental Signatures for Medium Modifications

Steffen Strauch

The George Washington University

The Physics of Nuclei with 12 GeV Electrons Workshop Jefferson Lab, November 1–5, 2004

Outline

Introduction

- Experimental searches for medium effects
 - Meson medium modifications
 - Nucleon medium modifications
- Probing high-density configurations at higher energies
- Summary

Conventional Nuclear Physics vs. QCD

Conventional nuclear physics:

Nuclei are effectively and well described as

- point like protons and neutrons
- interaction through meson exchange
- Nuclear mass: $M_A \approx [NM_n + ZM_p](1 0.01)$
- Underlying theory: QCD
 - Nucleons and mesons are not the fundamental entities
 - In the chiral limit, phase transition to quark-gluon plasma
- Connection: agreement between Skyrme force and effective interaction corresponding to the quark meson coupling model. Talk by P. Guichon.

Hadrons in the Nuclear Medium

Nonperturbative QCD

	chiral condensate
chiral symmetry spontaneously broken in the ground state	$\left\langle \bar{q}q\right\rangle \neq 0$
chirally restored phase ($T \ge 150~{\rm MeV}$)	$\left\langle \bar{q}q\right\rangle =0$
at nuclear densities	reduced

• Hadronic properties should depend on value of the chiral condensate $\langle \bar{q}q \rangle$. Brown-Rho scaling:

$$m_{\sigma}^*/m_{\sigma} \approx m_N^*/m_N \approx m_{\rho}^*/m_{\rho} \approx m_{\omega}^*/m_{\omega} < 1$$

Talk by U .Mosel

Ko, Koch, Li, Ann. Rev. Nucl. Part. Sci **47**, 505 (1997) G.E. Brown, M. Rho, Phys. Rev. Lett **66**, 2720 (1991)

In-medium properties of Vector Mesons

Dilepton invariant mass spectrum from Nucleus–Nucleus Collision

... without dropping vector-meson masses

... with dropping vector-meson masses

- Comparison with transport calculations indicate lowering of ρ-meson mass in medium.
- "Cleaner" conditions: γA

Figures adapted from: A. Drees, Proc. Quark Matter 96, Nucl. Phys. **A610**, ed. P. Braun-Munzinger (1997); Ko, Koch, Li, Ann. Rev. Nucl. Part. Sci **47**, 505 (1997)

ω Photoproduction in Nuclei

TAPS / Crystal-Barrel Experiment at ELSA (Bonn) $E_{\gamma} = 0.8 - 2.5 \text{ GeV}$

- Nb: dense and large
- ▶ *w* meson: mass shift (-140 MeV to -15 MeV) expected; survives in medium with observable resonance structure
- Observable: $\pi^0 \gamma$ invariant-mass spectrum
 - + Branching ratio 8.9%; no ρ -meson contribution
 - FSI of π^0 in nucleus

Messchendorp, Sibirtsev, Cassing, Metag, Schadmand, Eur. Phys. J. A 11, 95 (2001)

π^0 -Kinetic-Energy Cutoff

 \blacktriangleright Reduction of π^0 -rescattering background

Transport calculation. Figure from Pascal Mühlich, T. Falter and U. Mosel, in Proc. Intri Workshop XXXII on Gross Properties of Nuclei and Nuclear Excitations, M. Buballa, *et al.* Eds., Hirschegg, Austria (2004)

In-Medium Decays

- Enhancement of in-medium decays by minimizing the decay length
- $\blacktriangleright \omega$ -three-momentum cutoff

Figure from Pascal Mühlich, T. Falter and U. Mosel, in Proc. Intnl Workshop XXXII on Gross Properties of Nuclei and Nuclear Excitations, M. Buballa *et al.* Eds., Hirschegg, Austria (2004)

Preliminary Data from CBTAPS

Preliminary experimental data favor sizable modification of the ω spectral density in nuclei; $m_{\omega}^* = m_{\omega}^0 (1 - 0.16\rho_N/\rho^0)$

Figure from Pascal Mühlich, T. Falter and U. Mosel, in Proc. Intnl Workshop XXXII on Gross Properties of Nuclei and Nuclear Excitations, M. Buballa *et al.*, Hirschegg, Austria (2004)

CLAS g7 Experiment

- Photoproduction of vector mesons (ρ , ω , and ϕ) off nuclei
- Targets: D_2 , C, Ti, Fe, and Pb, Beam: E_e = 3 and 4 GeV

- Observable: e^+e^- invariant-mass spectrum
 - + no strong FSI
 - small branching ratio, broad ρ -meson signal, background from Bethe-Heitler processes
- Data taken fall 2002; Data analysis underway (C. Tur, M. Wood)

JLab Experiment E 01-112, C. Djalali, M. Kossov, and D. Weygand, spokespeople

Interpretation of the EMC Effect

• $R(x,Q^2) = F_2^A / A F_2^N$: Depletion of the nuclear structure function $F_2^A(x)$ in the valence-quark regime $0.3 \le x \le 0.8$

 ▶ J. Smith and G. Miller: chiral quark-soliton model of the nucleon Conventional nuclear physics does not explain EMC effect → Nucleon structure is modified

SLAC-E139 data for Iron and Gold; Figure from Jason R. Smith and Gerald A. Miller, Phys. Rev. Lett. **91**, 212301 (2003)

Limits for Medium Modifications of Nucleon Form Factors

► *y*-scaling

- $Q^2 > 1 \; ({\rm GeV/c})^2 : \Delta G_M < 3\% \; [1]$
- ▶ Coulomb Sum Rule, *L*-Response
 - No quenching in the data is observed [2]
 - Quenching of S_L is experimentally established [3]
 - $\blacktriangleright Q^2 \leq 0.5~({\rm GeV/c})^2$: $\Delta G_E < 15\%,$ or even <5%
- $\blacktriangleright \ {\rm Exclusive} \ A(e,e'p) \ {\rm processes} \\$

[1] I. Sick, in: H. Klapdor (Ed.), Proc. Int. Conf. on Weak and Electromagnetic Interactions in Nuclei, Springer-Verlag, Berlin, 1986, p. 415

[2] J. Jourdan, Nucl. Phys. A 603, 117 (1996), J. Carlson *et al.*, Phys. Lett. B 553, 191 (2003)

[3] J. Morgenstern, Z.-E. Meziani, Phys. Lett. B 515, 269 (2001)

Form-Factor Ratio from LT Separation

$$R_G = \frac{G_M}{G_E} = \sqrt{\frac{W_T}{W_L} \frac{4m^2}{Q^2}}$$

Nuclear medium effects $^{12}C(e,e'p)$?

Experimental evidence...?

T.D. Cohen, J.W. Van Orden, A. Picklesimer, Phys. Rev. Lett. **59**, 1267 (1987)

Polarization-Transfer Technique

• Proton recoil polarization in $(\vec{e}, e'\vec{p})$

Free electron-nucleon scattering

$$\frac{G_E}{G_M} = -\frac{P'_x}{P'_z} \cdot \frac{(E_i + E_f)}{2m} \tan\left(\frac{\theta_e}{2}\right)$$

b Bound nucleons \rightarrow evaluation within model

Polarization Transfer in ${}^{4}\text{He}(\vec{e}, e'\vec{p}){}^{3}\text{H}$

- Reaction mechanism effects in $A(\vec{e}, e'\vec{p})B$ predicted [1] to be minimal and small for
 - Quasielastic scattering
 - Low missing momentum
 - Symmetry about $\mathbf{p}_m = 0$
- Jefferson Lab Hall-A Experiment E93-049 [2]
 - ⁴He target: dense yet simple nucleus; *s*-shell knockout;
 RDWIA and microscopic calculations possible
 - ▶ $Q^2 = 0.5$, 1.0, 1.6, and 2.6 (GeV/c)²

A. Meucci, C. Guisti, and F.D. Pacati, Phys. Rev. C 66, 034610 (2002).

[2] Jefferson Lab experiment E93-049, R. Ent and P. Ulmer, spokespersons; S. Strauch *et al.*, Phys. Rev. Lett. **91**, 052301 (2003)

^[1] *e.g.*, J.M. Laget, Nucl. Phys. A **579**, 333 (1994), J.J. Kelly, Phys. Rev. C **59**, 3256 (1999)

4 He $(\vec{e}, e'\vec{p}){}^{3}$ H – Polarization-Transfer Ratio

Optical potential vs. Glauber approximation to describe FSI

RDWIA: J.M. Udias *et al.*, Phys. Rev. Lett. **83**, 5451 (1999); Relativistic Multiple-scattering Glauber Approximation (RMSGA): J. Ryckebusch *et al.*, Nucl. Phys. A **728**, 226 (2003)

${}^{4}\mathrm{He}(e,e'\vec{p}){}^{3}\mathrm{H}$ — Induced Polarization

- Final-state interactions consistent with data
- Need smaller systematic uncertainties of P_y

Prelim. Calculations by R. Schiavilla et al.

- Small effect of charge-exchange FSI and MEC on P'_x/P'_z .
- Sizeable effect from spin-dependent charge-exchange FSI on P'_x/P'_z ratio and P_y .

Figure curtesy of R. Schiavilla. Calculation not yet acceptance averaged. Schiavilla, Benhar, Kievsky, Marcucci, and Viviani, in preparation.

Polarization-Transfer Ratio

J.M. Udias *et al.*, Phys. Rev. Lett. **83**, 5451 (1999) D. Debruyne *et al.*, Phys. Rev. C **62**, 024611 (2000), J. Ryckebusch *et al.*, Nucl. Phys. A **728**, 226 (2003)

In-Medium Nucleon Form Factor

- Quark meson coupling model
- Chiral quark-soliton model
- Modified Skyrme model
- Form factor suppressed as density increases
- Calculations in agreement with existing exp. limits on medium modifications

QMC: D.H. Lu *et al.*, Phys. Rev. C **60**, 068201 (1999) Soliton: Jason R. Smith and Gerald A. Miller, Phys. Rev. Lett. **91**, 212301 (2003) Skyrme: U. Yakhshiev, U. Meißner, A. Wirzba, Eur. Phys. J. A **16**, 569 (2003)

RDWIA including QMC Form Factors

J.M. Udias *et al.*, Phys. Rev. Lett. **83**, 5451 (1999) D.H. Lu *et al.*, Phys. Rev. C **60**, 068201 (1999)

Polarization Double Ratio — Summary

Data effectively described by proton medium modifications

> In-medium form factors reduce double ratio by pprox 6% at 1 GeV 2 /c 2

New Experiment E03-104

New data on polarization-transfer ratio and induced polarization could put conventional model of nuclear physics to rigorous test.

Phase Diagram for Hadronic Matter

- At nuclear matter densities 0.17 nucleons/fm³ nucleon wave functions nearly overlap.
- JLab energy upgrade allows to study high density configurations

Figure from: Pre-Conceptual Design Report for The Science and Experimental Equipment for The 12 GeV Upgrade of CEBAF (2004)

The EMC Effect at 12 GeV

- With the 12 GeV upgrade, Jefferson Lab can improve data at large x and in light nuclei (³He, ⁴He)
 - \blacktriangleright Determine if EMC effect depends on A or ρ

 $\rho_{^{4}\mathrm{He}} \approx \rho_{^{12}\mathrm{C}}$

Allow to evaluate models of EMC effect

e.g., different x-dependence in few-body nuclei and heavy nuclei

Probing high-density configurations

Example: Tagged EMC Effect on deuterium

Pre-Conceptual Design Report for The Science and Experimental Equipment for The 12 GeV Upgrade of CEBAF (2004); M.M. Sargsian *et al.*, J. Phys. G: Nucl. Part. Phys. **29**, 1 (2003)

Tagged EMC Effect

• Measure nuclear structure function in semi-inclusive $d(e, e'p_s)X$ reaction

Tagged proton in backward hemisphere

(α : light-cone momentum fraction of spectator)

lpha-Dependence Cross-Section Ratio G

$$G(\alpha) = \frac{\sigma(x_1, \text{large EMC effect})}{\sigma(x_2, \text{no EMC effect})}$$

- off-shell model (dot-dashed)
 Melnitchouk, Schreiber, Thomas (1994)
- color-delocalization model (dotted)
 Close, Roberts, Ross (1983)
- color-screening model (dashed)
 Frankfurt, Strikman (1985)

CLAS Experiment with 11 GeV Beam

d(e,e'p)X

 $\alpha = 1.4$, $p_{T} = 0$ 1.00 ×max 0.75 region of large EMC ĩ effect 0.50 $x_{min} (Q^2 = 4 GeV^2)$ 0.25 $x_{min} (Q^2 = 1 \text{ GeV}^2)$ 0.0 6 10 12 16 18 20 4 8 14 E_e(GeV)

Region of large EMC effect and \(\alpha\) = 1.4 accessible with 11 GeV electron beam

 \tilde{x} : momentum fraction carried by the struck quark in the moving nucleon

Figure from M.M. Sargsian et al., J. Phys. G: Nucl. Part. Phys. 29, 1 (2003)

Summary

- Vector Mesons in the nuclear medium
 - \blacktriangleright Heavy-ion experiments: dropping of ρ mass in medium
 - New photoproduction experiments (CBTAPS, CLAS)
- Nucleons in the nuclear medium
 - EMC effect: conventional theory unable to provide explanation
 - Present ${}^{4}\text{He}(\vec{e},e'\vec{p}){}^{3}\text{H}$ recoil polarization data
 - Significant deviation from RDWIA and microscopic results, effectively described by proton medium modifications
 - Possibly larger contribution from spin-dependent charge-exchange reaction
 - Induced polarization crucial
- JLab upgrade makes possible probing of high nuclear densities
 - Extend measurements to high x, low A
 - Tagged EMC effect in deuterium