Nov, 2004

Hadron-hadron Interactions

PN12

116

general considerations
 effective approaches
 microscopic approaches
 OPE methods
 Dyson-Schwinger
 constituent quark model
 chiral symmetry issues

Eric Swanson

General Considerations

Ubiquitous hadronic interactions

- nuclear physics
- quark-gluon plasma (J/ψ suppression)
- nuclear astrophysics (EOS)
- high energy physics $(g-2, \epsilon'/\epsilon)$
- heavy flavour physics ($D \pi \pi \pi$, $\Delta I = 1/2$)
- hadronic physics (KK, X(3872), σ , N*,...)

I=O, S-wave $\pi\pi$ Scattering

Final State Interactions Electroweak Physics

 $\frac{\epsilon'}{\epsilon} = \frac{\langle \pi \pi_{I=2} | H_{EW} | K_L \rangle}{\sqrt{2} \langle \pi \pi_{I=0} | H_{EW} | K_L \rangle}$

Final State Interactions Fermi approximation to FSI $T = T_0 F$ $F = \left| \frac{\psi(0)}{\psi_0(0)} \right|$ $\sigma(\gamma\gamma \to \pi^+\pi^-) = \sigma_0 \frac{1}{\alpha} |2F_0 e^{i\delta_0} + F_2 e^{i\delta_2}|^2$ $\sigma(\gamma\gamma \to \pi^0\pi^0) = \sigma_0 \frac{2}{9} |F_0 e^{i\delta_0} - F_2 e^{i\delta_2}|^2$

Effective Approaches

hadro-dynamics • isobar model • Argonne V18 model • Fetter-Walecka model •chiral perturbation theory soft collinear effective theory

cē dissociation (QGP)

Microscopic Approaches

Operator Product Expansion small hadron interacting with soft gluons

 $\frac{1}{\delta t} \sim E_a - E_\phi \gg \Lambda_{QCD}$

M. Peskin, NPB156, 365 (1979) Luke, Manohar, Savage, PLB288, 355 (1992) Kharzeev & Satz, PLB334, 155 (1994) Brodsky & Miller, PLB412, 125 (1997)

Operator Product Expansion

Leutwyler, PLB98, 156 (1981)

$$\delta H = -\mathcal{P} \mathbf{E} \cdot \mathbf{r} \frac{1}{H_a - E_\phi} \mathbf{E} \cdot \mathbf{r} \mathcal{P}$$

 $\delta E_n = \langle \phi_n | \delta H | \phi_n \rangle$

$$\delta E \propto C_E \langle \mathbf{E}^2 \rangle$$

Static Lattice Hybrid Potentials

Operator Product Expansion

Leutwyler, PLB98, 156 (1981)

$$\delta H = -\mathcal{P} \mathbf{E} \cdot \mathbf{r} \frac{1}{H_a - E_\phi} \mathbf{E} \cdot \mathbf{r} \mathcal{P}$$

 $\delta E_n = \langle \phi_n | \delta H | \phi_n \rangle$ $\rightarrow \langle \phi_n; \Sigma_g^+ | \delta H | \phi_n; \Sigma_g^+ \rangle$

$$=\sum_{h,\Lambda,\eta,Y}\frac{|\langle\phi_n;\Sigma_g^+|\mathbf{E}\cdot\mathbf{r}|h;\Lambda_\eta^Y\rangle|^2}{(E_h(\Lambda_\eta^Y)-E_\phi)}$$

$$=\sum_{h,\Lambda,\eta,Y}\frac{|\langle\phi_n;\Sigma_g^+|\mathbf{E}\cdot\mathbf{r}|h;\Lambda_\eta^Y\rangle|^2}{(E_h(\Lambda_\eta^Y)-E_\phi)}$$

The second second second second

factorizes

$$\delta E_n = \sum_h \frac{|\langle \phi_n | \mathbf{r} | h \rangle|^2}{(E_h - E_\phi)} \cdot \langle \Sigma_g^+ | \mathbf{E}^2 | \Sigma_g^+ \rangle$$

Lattice Gauge Theory

BB Interactions

C. Michael and P. Pennanen (UKQCD Collaboration), hep-lat/9901007 (Jan. 1999)

Dyson-Schwinger Equations

Bicudo et al., PRD65, 076008 (2002).

Constituent Quark Models "trust your model"

Variational Resonating Group Method

project multiquark system to channels of interest

$$\mathcal{L}(u_L) = \left(\frac{d^2}{dR^2} - \frac{L(L+1)}{R^2} + k^2\right) + \int W^{(L)}(R, R')u_L(R')dR'$$

$$\delta \int_0^\infty u_L(R) \mathcal{L}(u_L) dR = 2ik \,\delta S_L$$

an

$$J[u_L] = S_L + \frac{i}{2k} \int_0^\infty u_L(R) \mathcal{L}(u_L) dR$$

Multiquarks for the first time, the colour structure becomes important.

BB Interactions

Barnes, Black, Dean, Swanson, PRC60, 045202 (1999).

πψ Scattering

-

Wong, Swanson, Barnes, PRC62, 04520 (2000).

Swanson, PLB588, 189 (2004)

V	$ ho\psi$	$D^0 \bar{D}^{0*}$	D^+D^{-*}	$\omega\psi$
$ ho\psi$	_	V_q	V_q	—
$D^0 \bar{D}^{0*}$		V_{π}^{-}	V_{π}	V_q
$D^{+}D^{-*}$			V_{π}	V_q
$\omega\psi$				-

strongest attraction: I=0 1⁺⁺
find a single bound state
isospin symmetry violation is natural in weakly bound molecules

Effective Potential

X(3872): decays

weak binding \rightarrow use free space decay widths to estimate dissociation decay modes

$D^{0*} D^{0*} D^{-*} D^{-*} D^{-*} \rho \rho \omega \omega \rho \omega$

	Contraction of the Property of the				and the second se				
$B_E \ ({ m MeV})$	$D^0 ar{D}^0 \pi^0$	$D^0 \bar{D}^0 \gamma$	$D^+D^-\pi^0$	$(D^+ \bar{D}^0 \pi^- + \text{c.c})/\sqrt{2}$	$D^+D^-\gamma$	$\pi^+\pi^-J/\psi$	$\pi^+\pi^-\gamma J/\psi$	$\pi^+ \pi^- \pi^0 J/\psi$	$\pi^0 \gamma J/\psi$
0.7	67	38	5.1	4.7	0.2	1290	12.9	720	70
1.0	66	36	6.4	5.8	0.3	1215	12.1	820	80
2.0	57	32	9.5	8.6	0.4	975	9.8	1040	100
3.8	52	28	12.5	11.4	0.6	690	6.9	1190	115
6.1	46	26	15.0	13.6	0.7	450	4.5	1270	120
9.0	43	24	16.9	15.3	0.8	285	2.9	1280	125
12.7	38	22	18.5	16.7	0.9	180	1.8	1240	120

$$\frac{\Gamma(\hat{\chi} \to \pi \pi \pi J/\psi)}{\Gamma(\hat{\chi} \to \pi \pi J/\psi)} = 0.56$$

Coupled Channels

 c.c. effects are clearly important to almost all hadronic interactions

 mícroscopíc models requíre an understanding of nonperturbative gluodynamics

coupled channel CQM

chíral píonslíght píons

chíral píons
líght píons
píon clouds

chiral pions
light pions
pion clouds
pions in the final state (σ)

Conclusions

- hadron-hadron interactions are everywhere and are important
- LGT: H-H is its most difficult regime
- DS: Euclidean space and analytic structure
 naive application of the CQM is reasonably successful -- BUT

details depend on 1/m² structure coupled channels matter relativistic kinematics can matter chiral dynamics matter

+ ÆRIC MEC HEHT GEWYRCAN