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Large           asymmetry in proton observed in DIS (NMC) 
and Drell-Yan (CERN NA51 and FNAL E866) experiments  

Flavor asymmetry of proton sea

d̄ − ū

proton. An extrapolation was made to account for the unmea-

sured region at low x. To extrapolate this integral from the

measured region, which is shown in Fig. 11, to the unmea-

sured region, MRST and CTEQ5M were used to estimate the

contribution for 0!x!0.015 and it was assumed that the
contribution for x"0.35 was negligible. The uncertainty

from this extrapolation was estimated to be 0.0041 which is

half the difference between the contributions as given by

MRST and CTEQ5M.

VII. CHARGE SYMMETRY AND SHADOWING

The analysis presented here assumes that the parton dis-

tributions of the nucleon obey charge symmetry: i.e., up(x)

!dn(x), d̄ p(x)! ūn(x), etc. This is consistent with the treat-

ment in previous experiments #1–4$ and global fits #13–15$.
The possibility that charge symmetry could be significantly

TABLE XI. The cross section ratio, d̄/ ū and d̄" ū values determined from the combination of all data sets for each x2 bin. The first

uncertainty is statistical and the second uncertainty is systematic. The quantities extracted from the cross section ratio are given for Q2

!54 GeV2/c2. The cross section ratio has a systematic uncertainty of less than 1% as shown in Table X. The average values for kinematic

variables are also shown.

x2 range %pT& %M'#'"&
min-max %x2& %xF& (GeV/c) (GeV/c2) (pd/2(pp

d̄/ ū d̄" ū

0.015–0.030 0.026 0.534 1.004 4.6 1.038$0.022 1.085$0.050$0.017 0.862$0.489$0.167

0.030–0.045 0.038 0.415 1.045 5.1 1.056$0.011 1.140$0.027$0.018 0.779$0.142$0.096

0.045–0.060 0.052 0.356 1.076 5.6 1.081$0.010 1.215$0.026$0.020 0.711$0.077$0.060

0.060–0.075 0.067 0.326 1.103 6.2 1.086$0.011 1.249$0.028$0.021 0.538$0.055$0.041

0.075–0.090 0.082 0.296 1.122 6.8 1.118$0.013 1.355$0.036$0.023 0.512$0.044$0.028

0.090–0.105 0.097 0.261 1.141 7.2 1.116$0.015 1.385$0.046$0.025 0.400$0.040$0.022

0.105–0.120 0.112 0.227 1.156 7.5 1.115$0.018 1.419$0.060$0.027 0.321$0.038$0.017

0.120–0.135 0.127 0.199 1.168 7.8 1.161$0.023 1.630$0.085$0.031 0.338$0.034$0.013

0.135–0.150 0.142 0.182 1.161 8.2 1.132$0.027 1.625$0.110$0.033 0.259$0.035$0.010

0.150–0.175 0.161 0.164 1.156 8.7 1.124$0.027 1.585$0.111$0.032 0.180$0.027$0.008

0.175–0.200 0.186 0.146 1.146 9.5 1.144$0.038 1.709$0.158$0.036 0.142$0.023$0.005

0.200–0.225 0.211 0.133 1.146 10.3 1.091$0.047 1.560$0.194$0.034 0.081$0.022$0.004

0.225–0.250 0.236 0.120 1.178 11.1 1.039$0.063 1.419$0.264$0.036 0.045$0.023$0.003

0.250–0.300 0.269 0.097 1.177 12.0 0.935$0.067 1.082$0.256$0.032 0.006$0.019$0.002

0.300–0.350 0.315 0.046 1.078 12.9 0.729$0.124 0.346$0.395$0.022 "0.040$0.036$0.002

FIG. 9. d̄(x)/ ū(x) versus x shown with statistical and system-

atic uncertainties. The combined result from all three mass settings

is shown with various parametrizations. The E866 data and the

parametrizations are at Q2!54 GeV2/c2. The NA51 data point is
also shown.

FIG. 10. d̄" ū as a function of x shown with statistical and

systematic uncertainties. The E866 results, scaled to fixed Q2

!54 GeV2/c2, are shown as the circles. Results from HERMES

(%Q2&!2.3 GeV2/c2) are shown as squares. The error bars on the
E866 data points represent the statistical uncertainty. The inner er-

ror bars on the HERMES data points represent the statistical uncer-

tainty while the outer error bars represent the statistical and system-

atic uncertainty added in quadrature.
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reviews !49,50" provide a detailed survey of the literature.
Most calculations include contributions from #N and #$

configurations. g#NN and g#N$ are the well known pion-

nucleon and pion-delta coupling constants, so the primary

difference among the various calculations is the treatment of

the #NN and #N$ vertex form factors. As an example, Fig.

15 compares the present determination of d̄(x)! ū(x) to a

pion-cloud-model calculation !51", which followed a proce-
dure detailed by Kumano !52". In this calculation, dipole
form factors were used, with %"1.0 GeV for the #NN ver-
tex and %"0.8 GeV for the #N$ vertex. This calculation is

typical of many of this type, in that the probability of finding

the nucleon in a #N configuration is approximately twice

that of finding it in the #$ configuration !53,54". However, a
recent calculation by Nikolaev et al. !55", also shown in Fig.
15, calls this into question. After isolating the contribution to

inclusive particle production from Reggeon exchange, they

conclude that the #N$ vertex should be substantially softer

than previously believed, significantly reducing the probabil-

ity of finding the nucleon in a #$ configuration. It adopts

Gaussian form factors with cutoff parameters of 1 GeV!2

for the #NN vertex and 2 GeV!2 for the #N$ vertex. This

calculation predicts that the #N component of the nucleon is
slightly more probable than in Ref. !51" and the #$ compo-

nent is very small. Thus, while it provides very good agree-

ment with the E866 results for x#0.05, it contains signifi-
cantly more singular behavior as x→0. Overall, it predicts

that

!
0

1

! d̄&x '! ū&x '"dx"0.177. &22'

While the pion-cloud calculations above give a good de-

scription of the measured d̄(x)! ū(x), they are not able to

predict d̄(x)/ ū(x) since neither one attempts to describe the

entire light antiquark sea. Rather, they assume that an addi-

tional symmetric contribution exists due to gluon splitting to

bring the d̄/ ū ratio down to the measured value. These mod-

els do however indicate that pions make up a large part of the

sea where the asymmetry is greatest. In contrast, Alberg et

al. !56" have investigated whether or not the entire light an-
tiquark sea might be understood in a meson-cloud picture.

They find that, by considering #N and (N contributions,

they can fit d̄(x)! ū(x) and simultaneously obtain a reason-

able description of d̄/ ū at x$0.25. They also speculate that
the addition of #$ , )N and *N terms would preserve the fit
to d̄! ū , because of a cancellation between the #$ and )N
effects, and further improve the agreement for d̄/ ū .

A different approach to the d̄/ ū asymmetry, based on chi-

ral perturbation theory, has been proposed by Eichten et al.

!57". Within their model, the asymmetry arises from the cou-
pling of constituent quarks to Goldstone bosons, such as u

→d#% and d→u#!. The excess of d̄ over ū is then simply

due to the additional valence u quark in the proton. Figure 15

includes the result of such a calculation, based on a calcula-

tion of d̄(x)! ū(x) at Q0"0.5 GeV/c by Szczurek et al.

!58", and evolved to Q2"54 GeV2/c2. It clearly predicts
too soft an asymmetry. This arises because the model treats

the three valence quarks equivalently at the initial scale, with

each carrying 1/4 of the nucleon momentum. &Gluons carry
the remaining 1/4.' The d̄/ ū ratio is then fixed by Clebsch-
Gordan coefficients to be 11/7 for all x at Q0. With this input,

QCD evolution requires d̄/ ū+11/7, independent of x and Q.
Hence, unlike the meson-baryon models, this model under-

predicts d̄/ ū over much of the measured x range. E866 re-

sults suggest that additional correlations between the chiral

constituents of the nucleon need to be taken into account.

The chiral quark-soliton model has been used by Pobylitsa et

al. !59" to calculate d̄(x)! ū(x) in the large-Nc limit. Figure

15 shows that this model reproduces the measured d̄(x)

! ū(x) values well for x#0.08, but it overestimates the
asymmetry at small x.

The spin and flavor structure of the nucleon sea have been

investigated in the instanton model by Dorokhov and

Kochelev !60". They derive expressions for the x dependence
of the instanton-induced sea that are appropriate for very

large and very small x. They then combine the two

asymptotic forms to obtain an ad hoc expression for all x,

d̄ I&x '! ū I&x '"1.5A
&1!x '7

x ln2x
, &23'

where A is an arbitrary constant which they chose to repro-

duce early NMC results. This form gives a poor description

FIG. 15. Comparison of the measured d̄(x)! ū(x) at Q2

"54 GeV2/c2 to predictions of several models of the nucleon sea.
The solid and short-dash curves show pion-cloud calculations by

Peng et al. and Nikolaev et al., respectively. The dotted curve

shows the chiral perturbation theory calculation of Szczurek et al.,

while the dot-dash curve shows the chiral quark-soliton calculation

of Pobylitsa et al. The long-dash curve shows the instanton model

prediction of Dorokhov and Kochelev.
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∫ 1

0

dx (d̄(x) − ū(x)) = 0.118 ± 0.012

Towell et al., Phys. Rev. D 64 (2001) 052002



Large           asymmetry in proton observed in DIS (NMC) 
and Drell-Yan (CERN NA51 and FNAL E866) experiments  

d̄ − ū

Naively expect symmetric sea from pQCD

Flavor asymmetry of proton sea

Large flavor asymmetry reveals importance of

(e.g. pion cloud)

nonperturbative dynamics



Pion cloud

some of the time the proton             
π

+

(Heisenberg Uncertainty Principle)
 looks like a neutron &

p → π
+

n → p
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FIG. 3: Contributions to the wave function and vertex renormalization of the nucleon matrix

elements of the operators Oµ1...µn

i , i = q,∆q, δq, in Eq. (3). Solid, double and dashed lines denote

nucleon, ∆ and pion propagators and the crossed circle and box indicate the insertion of the relevant

operators. Diagrams ZN
2 and Z∆

2 denote the contributions to wave function renormalization (a

derivative with respect to the external momentum is implied).

The renormalization constants for the spin-independent, helicity and transversity opera-

tors are given by

Z−1
q = 1 + ZNN

1,U + Z∆∆
1,U + Ztad

1,U , (18a)

Z−1
∆q = 1 + ZNN

1,P + ZN∆
1,P + Z∆N

1,P + Z∆∆
1,P + Ztad

1,P + ZNWT
1,P + Z∆WT

1,P , (18b)

Z−1
δq = 1 + ZNN

1,P + ZN∆
1,P + Z∆N

1,P + Z∆∆
1,P +

1

2
Ztad

1,P +
1

2
ZNWT

1,P +
1

2
Z∆WT

1,P . (18c)

The contributions from the coupling to nucleon intermediate states are given by:

ZNN
1,U = − g2

A

(4πfπ)2

∫ ∞

0

k4u2(k)dk

ω3(k)
, (19)

and

ZNN
1,P =

1

3

g2
A

(4πfπ)2

∫ ∞

0

k4u2(k)dk

ω3(k)
, (20)

for the unpolarized and polarized operators, respectively. One can explicitly verify that the

LNA behavior of these contributions is m2
π log m2

π. The ∆ contributions to the unpolarized

16

π
+

np p

Why is d̄ != ū ?

Sullivan, Phys. Rev. D5 (1972) 1732



Pion cloud

p → π
+

n → p

some of the time the proton             
π

+

(Heisenberg Uncertainty Principle)
 looks like a neutron &

d̄ > ū !
Thomas, Phys. Lett. 126B (1983) 97

at the quark level

uud → (udd)(d̄u) → uud

Why is d̄ != ū ?



WM, Speth, Thomas, Phys. Rev. D59 (1998) 014033

Pion cloud contributions to 
flavor asymmetry in proton sea

tributions do not contradict other observables, such as the

total d̄! ū distribution, which should serve as an absolute

upper limit on the strength of the form factor !6". In Fig. 8#a$
we show the contributions to the sum x( d̄! ū) from the %N
and %& components with '%N"1.5 GeV and '%&
"1.3 GeV, compared with the CTEQ4 !15" and MRS98
!16" parametrizations. While at small x the calculated distri-
butions lie safely below the parametrization #the difference is
made up by the perturbatively generated g→qq̄ antiquark

distributions$, at large x the pion cloud already saturates the
total sea with these cut-offs—although one should add a cau-

tionary note that the antiquark distribution at large x is not

determined very precisely. For softer combinations of form

factors, namely '%N"1 GeV, '%&"1.3 GeV and '%N

"'%&"1 GeV, the total non-perturbative antiquark sea in
Fig. 8#b$ is below the empirical parametrizations in both

cases.

Therefore the only way to obtain a smaller d̄ excess at

large x and still be consistent with the total antiquark distri-

bution is to reduce the %N component, having a cut-off

smaller than for the %N& vertex. It was argued in Ref. !17"
that the %N& form factor should be softer than the %NN ,
based on the observation that the M1 transition form factor

was softer for (N& than for (NN . However, there is no
clear connection between these form factors, and hence no

compelling reason why the %N& form factor cannot be

harder than that for %NN . Indeed, a comparison of the axial
form factors for the nucleon and for the N–& transition

strongly favor an N–& axial form factor that is significantly

harder than that of the nucleon. In fact, the former is best fit

by a 1.3 GeV dipole, while the latter by a 1.02 GeV dipole

parametrization !42". Within the framework of PCAC these
form factors are directly related to the corresponding form

factors for pion emission or absorption !43".
In Fig. 9 we show the difference and ratio of the d̄ and ū

distributions calculated with the softer %NN form factor,

'%N"1 GeV, and '%&"1.3 GeV. The excess at large x
now is largely canceled by the %&. However, the smaller %N
contribution means that the asymmetry is underestimated in

the intermediate x range, x#0.2.

FIG. 6. %N and %& momentum distribution functions, with di-

pole form factor cut-offs '%N"1 GeV and '%&"1.3 GeV.

FIG. 7. Contributions from the %N and %& components

#dashed$ and the combined effect #solid$ to the #a$ d̄$ ū difference

and #b$ d̄/ ū ratio. The cut-off masses are '%N"1.5 GeV and

'%&"1.3 GeV.

FIG. 8. Total x( d̄! ū) distribution #a$ from the %N and %&
components #dashed$, with '%N"1.5 GeV, '%&"1.3 GeV, and
the total #solid$, #b$ the total contribution for '%N"1.5 GeV,
'%&"1.3 GeV #largest curve$, '%N"1 GeV, '%&"1.3 GeV
#middle$, and '%N"'%&"1 GeV #smallest$. The theoretical

curves are compared with the CTEQ4 !15" and MRS98 !16" global
parametrizations #dotted$.
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good description of data at x < 0.2

difficult to understand downturn at large x



Pauli blocking

Explicit calculations of antisymmetrization
g → uū g → dd̄ effects in               and

Why is d̄ != ū ?

Field, Feynman, Phys. Rev. D15 (1977) 2590

proton has more valence u than d 

uūdd̄easier to create       than ?



and five for the insertion of a u quark. The possible graphs

would be the analog of !b" and !c" from Fig. 1 for a uū in the
sea and the analog of graph !c" from Fig. 2 for a dd̄ in the

sea. Again, we would have more uū pairs than dd̄ pairs and

now it is clear why that happens: This is because there is one

free valence u quark that can be exchanged with the sea and

there is no such free valence d quark to be exchanged !in the

case of a dd̄ sea". The opposite situation happens when the
u quark emits the gluon such that the sum of all diagrams,

gluon emission from u and d valence quarks, renders an

equal probability for a uū and dd̄ pair creation, as expected

in a proton containing only one quark of each flavor. The

lesson is that we cannot treat the gluon emission in the pro-

ton from different flavors separately, and expect the Pauli

FIG. 1. Graphs containing uū pairs in the case where the valence quark emitting the virtual gluon goes to an excited state !i.e.,
s!g ,v#g).

FIG. 2. Graphs containing dd̄ pairs, in the case where the valence quark emitting the virtual gluon goes to an excited state !i.e.,
s!g ,v#g).

55 903FLAVOR ASYMMETRY OF THE NUCLEON SEA

uū
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now it is clear why that happens: This is because there is one

free valence u quark that can be exchanged with the sea and

there is no such free valence d quark to be exchanged !in the

case of a dd̄ sea". The opposite situation happens when the
u quark emits the gluon such that the sum of all diagrams,

gluon emission from u and d valence quarks, renders an
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dd̄

Steffens, Thomas, Phys. Rev. C55 (1997) 900

asymmetry small
ū > d̄ !

Donoghue, Golowich, Phys. Rev. D15 (1977) 3421



perturbative effects small

Why is d̄ != ū ?

Pauli blocking

Explicit calculations of antisymmetrization
g → uū g → dd̄ effects in               and

 Ross, Sachrajda, Nucl. Phys. B149 (1979) 497 
Steffens, Thomas, Phys. Rev. 55 (1997) 900

nonperturbative ??

Field, Feynman, Phys. Rev. D15 (1977) 2590

proton has more valence u than d 

uūdd̄easier to create       than ?



Polarization asymmetry of proton sea

Neither pQCD nor meson cloud contribute
significantly to ∆d̄ − ∆ū

Disentangle origin of unpolarized and polarized 
asymmetries in sea via semi-inclusive DIS

But  Pauli Exclusion Principle (antisymmetrization)

∆ū − ∆d̄ ≈

5

3
(d̄ − ū)

Schreiber, Signal, Thomas, Phys. Rev. D44, 2653 (1991)
Steffens, Phys. Rev. C55, 900 (1997)



Polarization asymmetry of proton sea

current data cannot distinguish between
zero and small nonzero ∆ū − ∆d̄

P. Liebing: Polarized Quark Distributions 403

Fig. 2. HERMES results on the semi-inclusive asymmetries on deuterium for identified charged pions (compared to all charged
hadrons from SMC [9] in th x-range of HERMES), and for identified charged kaons. The error bands represent the systematic
uncertainties

Fig. 3. The x-weighted polarized parton distributions x∆q(x),
extracted from HERMES semi-inclusive asymmetries on polar-
ized hydrogen and deuterium targets. The data are shown at
fixed Q2 = 2.5 GeV2. The curves show results from LO QCD
fits to previously published inclusive data from [11] (dashed,
‘standard scenario’ ) and [12] (dot-dashed, ‘scenario 1’). The
light shaded error band shows the systematic uncertainties aris-
ing from uncertainties of the fragmentation model, the dark
shaded area shows the ones due to the uncertainties of the ex-
perimental asymmetries

-0.2

-0.1

0

0.1

0.2

0.03 0.1 0.6x

x(∆u–-∆d–)

Fig. 4. The x-weighted difference of the light sea helicity densi-
ties x(∆ū−∆d̄) at Q2 = 2.5 GeV2 as a function of x, compared
to a theoretical prediction from [13] (dashed curve with theo-
retical error band). The systematic error bands have the same
meaning as in Fig. 3

References

1. K. Ackerstaff et al. (HERMES): Nucl. Instrum. Meth. A
417, 230-265 (1998)

2. N. Akopov et al.: Nucl. Instrum. Meth. A 479, 511-530
(2002)

3. H.L. Lai et al.: Eur. Phys. J. C 12, 375 (2000)
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12. J. Blümlein and H. Böttcher: Nucl. Phys. B 636, 225

(2002)
13. B. Dressler et al.: Eur. Phys. J. C 14, 147 (2000)

Airapetian et al. [HERMES], Phys. Rev. Lett. 92 (2004) 012005

chiral soliton model
Dressler, Goeke, Polyakov, Weiss, 
Eur. Phys. J. C14 (2000) 147



Pion cloud at high energy

Is there any (more direct) evidence for     cloud in DIS?π

Theoretically,  a pion cloud component exists in QCD

leading nonanalytic contribution to moments
calculated model-independently from
chiral perturbation theory

Thomas, WM, Steffens, Phys. Rev. Lett. 85 (2000) 2892
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Theoretically,  a pion cloud component exists in QCD
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FIG. 3: Contributions to the wave function and vertex renormalization of the nucleon matrix

elements of the operators Oµ1...µn

i , i = q,∆q, δq, in Eq. (3). Solid, double and dashed lines denote

nucleon, ∆ and pion propagators and the crossed circle and box indicate the insertion of the relevant

operators. Diagrams ZN
2 and Z∆

2 denote the contributions to wave function renormalization (a

derivative with respect to the external momentum is implied).

The renormalization constants for the spin-independent, helicity and transversity opera-

tors are given by

Z−1
q = 1 + ZNN

1,U + Z∆∆
1,U + Ztad

1,U , (18a)

Z−1
∆q = 1 + ZNN

1,P + ZN∆
1,P + Z∆N

1,P + Z∆∆
1,P + Ztad

1,P + ZNWT
1,P + Z∆WT

1,P , (18b)

Z−1
δq = 1 + ZNN

1,P + ZN∆
1,P + Z∆N

1,P + Z∆∆
1,P +

1

2
Ztad

1,P +
1

2
ZNWT

1,P +
1

2
Z∆WT

1,P . (18c)

The contributions from the coupling to nucleon intermediate states are given by:

ZNN
1,U = − g2

A

(4πfπ)2

∫ ∞

0

k4u2(k)dk

ω3(k)
, (19)

and

ZNN
1,P =

1

3

g2
A

(4πfπ)2

∫ ∞

0

k4u2(k)dk

ω3(k)
, (20)

for the unpolarized and polarized operators, respectively. One can explicitly verify that the

LNA behavior of these contributions is m2
π log m2

π. The ∆ contributions to the unpolarized
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Is there any (more direct) evidence for     cloud in DIS?

Theoretically,  a pion cloud component exists in QCD

π

∫
dx x

n (d̄ − ū) = an(1 + clnam
2
π

log m
2
π
) + bnm

2
π

+ · · ·

clna = −(1 + 3g2
A)/(4πfπ)2

  Detmold et al., Phys. Rev. Lett. 87 (2001) 172001
  also Arndt, Savage (2001), Ji, Chen (2001)
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Semi-inclusive baryon production

Kinematics (target rest frame)

t ≡ (P − p)2 = −p2

⊥/ζ + tmax
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p2
X = (P − p + q)2 ∼ 0.8 GeV2 for Q2 ∼ 2 GeV2 at CEBAF energies, and p2

X ∼ 5 GeV2 for
Q2 ∼ 4 GeV2 at HERMES.

In terms of the polar angle α (in the target rest frame),

cos α =
M2

B + (1 − 2ζ)M2 − t√
(M2

B − M2 − t)2 − 4M2t
, (2)

between the B and γ momenta, production of baryons will occur between α = 0 and

αmax = arccos
(√

1 − (Mζ/MB)2

)
, (3)

which for ζ → 1 is $ 50o for B = ∆ and $ 57o for B = Λ.
For a given angle α, the pion four-momentum will be constrained to lie within the limits

given by:

tmin/max(α) =
1

sin2 α

(
M2

B sin2 α − M2(1 − 2x + cos2 α)

± 2M cos α
√

M2(1 − x)2 − M2
B sin2 α

)
. (4)

At small angles baryons will be produced over essentially the entire range of t (and therefore

ζ), however the number will fall off rapidly as α → arccos
(

1
MB

√
M2

B − M2(1 − x2)
)

because
of the fast convergence of the upper and lower bounds on t, until no particles are produced
beyond the kinematic boundary at tmax = tmin = − (M2

B(1 + x) − M2(1 − x)) /(1 − x).
The importance of the above kinematic limits was demonstrated in two experiments

[27,28] in which slow proton production was studied in ν-nucleon and ν-nucleus scattering.
The softening of the cross section for protons with momentum less than pmax (equal to
several hundred MeV in the experiments), was shown [29–31] to be precisely due to the
absence of interactions at x > xmax, where xmax = 1 − (p0max − |pmax|)/M .

The role of pions was also investigated in this process, however due to the large per-
turbative sea component of the nucleon structure function at x ∼ 0.05, no definite pionic
signal could be identified. We may hope, however, that by including polarization degrees
of freedom we can more efficiently isolate any pionic signal from behind the fragmentation
background.

III. PION CLOUD DYNAMICS

The pion model is a dynamical model of the nucleon where the dissociation of a physical
nucleon into a pion and an “undressed” nucleon or ∆ is explicitly witnessed by the probing
photon. The possible relevance of the process illustrated in Fig.1, where a π− emitted by
the proton is hit by a photon, to DIS was recognized some time ago [16,21,22], and has since
had several important and interesting applications, most notably in providing a mechanism
to break SU(2) and SU(3) flavor symmetries in the proton sea. In the pion-exchange model
the differential cross section is:

d5σ

dxdQ2dζdp2
Tdφ

∝ f 2
πN∆

16π2m2
π

T S s(t) F2
π∆

(t − m2
π)2

Lµν(l, q) W µν
π (k, q), (5)

5

Differential
cross section

e.g.      production∆

Wµν

π ∼ −gµν F2π(x, Q2)

pion structure functionform factorπN∆

Fπ∆(p2
⊥, ζ)
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the proton is hit by a photon, to DIS was recognized some time ago [16,21,22], and has since
had several important and interesting applications, most notably in providing a mechanism
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d5σ
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πN∆

16π2m2
π

T S s(t) F2
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Lµν(l, q) W µν
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5

Differential
cross section

T
S s(t) = Tr[u(P, S)ū(P, S) uα(p, s)ūβ(p, s)](P − p)α(P − p)β

Rarita-Schwinger (spin-3/2) spin-vector

e.g.      production∆
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In TRF,      and      emitted collinearlyπ ∆

selection rule for s=3/2:

T
S ± 3

2 (t) = 0

T
1

2
± 1

2 (t) =
1

12M2
∆

[
(M∆ − M)2 − t

] [
(M2

∆ + M)2 − t
]2

× (1 ± cos α)

For s=1/2:

α = Ŝ · ŝ = p̂z

spins of target and recoil baryon correlated



FIG. 2. Differential electroproduction cross section for various polarization states of the ∆++,

for typical (a) CEBAF and (b) HERMES kinematics (see text). The π-exchange model predictions
(solid) are for cut-off masses Λ = 600 (smallest), 800 and 1000 (largest) MeV. The top three solid
curves are for spin s = +1/2 final states, while the bottom three solid curves are for s = −1/2. The

quark-parton model background (dashed) is estimated using the fragmentation functions extracted
from the unpolarized EMC data [26] and Eqs.(17) and (18).
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FIG. 3. Background parton (spectator ‘diquark’) fragmentation process leading to the same
∆++ final state.
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CEBAF kinematics, x = 0.14, Q2 = 2 GeV2 and E = 8 GeV, and in Fig.2b for x = 0.075,
Q2 = 4 GeV2 and E = 30 GeV, as may be expected at HERMES. The pion-exchange model
predictions (solid curves) use the form factor in Eq.(7a) with cut-offs Λ = 600 (smallest),
800 and 1000 (largest) MeV, which gives < n >π∆≈ 0.01, 0.02 and 0.04, respectively. (For
< n >π∆≈ 0.02 the cut-off in a t-dependent dipole form factor would be ∼ 700 MeV.) The
spectrum shows strong correlations between the polarizations of the target proton (S =
+1/2) and the ∆++. In the next Section we examine the extent to which the suppression
of the antiparallel configuration of the p and ∆ spins in the pion-exchange model is diluted
by the competing parton fragmentation process, which constitutes the main background to
the pion-exchange process discussed here.

IV. BACKGROUNDS

At the large energy and momentum transfers possible with high-energy (E >∼ 10 GeV)
electron beams, the resonance backgrounds should not pose a major problem in identifying
the required signal. Firstly, interference from quasi-elastic ∆++ production will be eliminated
by charge conservation. Secondly, the large W involved means that interference from excited
∆∗ states (with subsequent decay to ∆++ and pions) will be negligible. In addition, any
such resonance contributions will be strongly suppressed by electromagnetic form factors at
large Q2 (Q2 >∼ 2 GeV2).

A potentially more significant background will be that due to uncorrelated spectator
fragmentation, as illustrated in Fig.3. We can estimate the importance of this process
within the parton model framework, in which the cross section is proportional to (assuming
factorization of the x and ζ dependence [47–49]):

d4σ(s)

dxdQ2dzdp2
T

∝ Fp↑(x, Q2) D̃s
p↑−q↑↓(z, p

2
T ), (12)

where z = ζ/(1 − x) is the light-cone momentum fraction of the produced baryon car-
ried by the spectator system. The function Fp↑(x, Q2) is proportional to the spin-weighted
interacting-quark momentum distribution functions, q↑↓(x) = (q(x) ± ∆q(x))/2, where ↑↓

denote quark spins parallel or antiparallel to the spin of the proton, with q(x) and ∆q(x)
being the sum and difference of q↑ and q↓, respectively. For our numerical estimates we
use the parametrization of ∆q(x) from Gehrmann and Stirling [50], and the CTEQ [51]
parametrization for q(x). The results change little if one uses, for example, the models of
Carlitz and Kaur [52] or Schäfer [53] for ∆q(x).

The fragmentation function D̃s
p↑−q↑↓(z, p

2
T ) gives the probability for the polarized (p↑

minus q↑↓) spectator system to fragment into a ∆++ with polarization s. The usual assump-
tion is that the transverse momentum distribution of the baryon also factorizes [48,54–56],
D̃s

p↑−q↑↓(z, p
2
T ) = Ds

p↑−q↑↓(z) ϕ(p2
T ), with

∫
dp2

T ϕ(p2
T ) = 1. To describe the soft, non-

perturbative parton fragmentation process, a number of phenomenological models have been
developed for the fragmentation functions. Many of these [57,58] have followed the basic
approach originally formulated by Field and Feynman [47,59], whose quark jet fragmenta-
tion model involved recursive qq̄ pair creation (cascade) out of the color field between the
scattered and spectator partons, with subsequent recombination into color neutral hadrons.

8

Uncorrelated spectator 
(“diquark”) fragmentation

Ds
p↑−q↑↓

(
z =

ζ

1 − x

)
ϕ(p2

T )

spin-dependent fragmentation function
for spectator “diquark” → ∆

++

At large z dominant fragmentation: uu → ∆
++

Duu ≈ α(1 − z)β , α ≈ 0.68 , β ≈ 0.3

EMC, Nucl. Phys. B264, 739 (1986)Dud ≈ 0.1Duuwith
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Assume “diquark” retains helicity during decay
(     pair creation independent of struck q helicity)qq̄

Use SU(6) symmetry to relate different
fragmentation functions

qq → ∆
++

D
s

qqj(jz)

example, a ∆⇑ or ∆↑ can emerge from a q↑q↑ diquark, whereas a ∆⇓ cannot. (Our notation
here is that ⇑, ↑, ↓,⇓ represent s = +3/2, +1/2,−1/2,−3/2 states, respectively.)

The overall normalization of the spin-dependent fragmentation functions is fixed by the
condition

q(x) Dp−q(z) + q̄(x) Dp−q̄(z) = q↑(x) Dp↑−q↑(z) + q↓(x) Dp↑−q↓(z)

+ q̄↑(x) Dp↑−q̄↑(z) + q̄↓(x) Dp↑−q̄↓(z), (15)

where

D(z) =
+3/2∑

s=−3/2

Ds(z). (16)

In relating the production rates for various polarized ∆++ we employ SU(6) spin-flavor wave
functions, from which simple relations among the valence diquark → ∆++ fragmentation
functions, Ds

qqj(jz)
(z), can be deduced (the diquark state qqj(jz) is labeled by its spin j and

spin projection jz). The leading functions are related by:

D⇑
uu1(1)

(z) = 3 D↑
uu1(1)

(z) =
3

2
D↑

uu1(0)
(z) =

3

2
D↓

uu1(0)
(z), (17)

with normalization determined from:

D⇑
uu1(1)

(z) =
3

4
Duu(z). (18)

(Note that this is true only when the spin projections of the diquark and ∆ are aligned.)
The non-leading fragmentation functions are those which require at least two qq̄ pairs to
be created from the vacuum, namely D⇑/⇓

uu1(0)
, D↓/⇓

uu1(1)
, D⇑/↑/↓/⇓

ud0(0)
, D⇑/↑/↓/⇓

ud1(0)
, and D⇑/↑/↓

ud1(1)
, and

those which require 3 such pairs, D⇓
uu1(1)

and D⇓
ud1(1)

. Except at very small z (z <∼ 0.2) the

latter functions are consistent with zero [58]. For the 2-qq̄ pair fragmentation functions, we
also expect that D⇑

uu1(0)
(z) = D⇓

uu1(0)
(z). For z >∼ 0.2 the unpolarized model fragmentation

functions of Ref. [58] requiring two qq̄ pairs (e.g. Dud(z)) are quite small compared with the
leading fragmentation functions, Dud(z) ( 0.1 Duu(z). For spin-dependent fragmentation we
therefore expect a similar behavior for those decay probabilities requiring two qq̄ pairs created
in order to form the final state with the correct spin and flavor quantum numbers. This
then allows for a complete model description of the polarized fragmentation backgrounds at
large z in terms of only the 4 fragmentation functions in Eq.(17).

Finally, the pT -integrated differential cross section for the electroproduction of a ∆++

with spin s can be written:

d3σ(s)

dxdQ2dζ
=

(
2πα2

M2E2x(1 − x)

) (
1

2x2
+

4M2E2

Q4

(
1 − Q2

2MEx
− Q2

4E2

))
(19)

×
[
4x

9

(
u↑

V Ds
ud1(0)

+ 2ū↑

(
2

3
Ds

uu1(1)
+

1

3
Ds

uu1(0)

)
+ u↓

V Ds
ud1(1)

+ 2ū↓

(
2

3
Ds

uu1(1)
+

1

3
Ds

uu1(0)

))
+

x

9

(
d↑

V Ds
uu1(0)

+ 2d̄↑

(
2

3
Ds

uu1(1)
+

1

3
Ds

uu1(0)

)
+ d↓

V Ds
uu1(1)

+ 2d̄↓

(
2

3
Ds

uu1(1)
+

1

3
Ds

uu1(0)

))]
.
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therefore expect a similar behavior for those decay probabilities requiring two qq̄ pairs created
in order to form the final state with the correct spin and flavor quantum numbers. This
then allows for a complete model description of the polarized fragmentation backgrounds at
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Spin-dependent fragmentation
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FIG. 3. Background parton (spectator ‘diquark’) fragmentation process leading to the same
∆++ final state.
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Assume “diquark” retains helicity during decay
     pair creation independent of struck q helicityqq̄

example, a ∆⇑ or ∆↑ can emerge from a q↑q↑ diquark, whereas a ∆⇓ cannot. (Our notation
here is that ⇑, ↑, ↓,⇓ represent s = +3/2, +1/2,−1/2,−3/2 states, respectively.)
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FIG. 2. Differential electroproduction cross section for various polarization states of the ∆++,

for typical (a) CEBAF and (b) HERMES kinematics (see text). The π-exchange model predictions
(solid) are for cut-off masses Λ = 600 (smallest), 800 and 1000 (largest) MeV. The top three solid
curves are for spin s = +1/2 final states, while the bottom three solid curves are for s = −1/2. The

quark-parton model background (dashed) is estimated using the fragmentation functions extracted
from the unpolarized EMC data [26] and Eqs.(17) and (18).
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S = +1/2 target E = 8 GeV, x = 0.14, Q2
= 2 GeV

2

FIG. 2. Differential electroproduction cross section for various polarization states of the ∆++,

for typical (a) CEBAF and (b) HERMES kinematics (see text). The π-exchange model predictions
(solid) are for cut-off masses Λ = 600 (smallest), 800 and 1000 (largest) MeV. The top three solid
curves are for spin s = +1/2 final states, while the bottom three solid curves are for s = −1/2. The

quark-parton model background (dashed) is estimated using the fragmentation functions extracted
from the unpolarized EMC data [26] and Eqs.(17) and (18).
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weaker correlation between spins of target p and
from diquark fragmentation 
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Polarization asymmetry

Differences between    -exchange and fragmentation models
enhanced through polarization asymmetries

π

FIG. 4. Polarization asymmetry for the π-exchange (upper curves) and parton fragmentation

(lower curves) models, with σ± as defined in the text, and σtot is the sum over all polarization
states. The solid and dashed lines are for CEBAF and HERMES kinematics, respectively.
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In Figs.2a and 2b the parton model predictions (dashed) for the various polarization
states of the ∆ are plotted in comparison with the pion-exchange cross sections. In the quark-
parton model the correlations are significantly weaker, with the ratio of polarized ∆s being
s = +3/2 : +1/2 : −1/2 : −3/2 ≈ 3 : 2 : 1 : 0. The comparisons assume that there is no
significant interference between the parton fragmentation and pion-exchange contributions.
At small values of the exchanged four-momentum squared t one may expect this to be a
good approximation, since the distance scales at which the pion and diquark are formed are
rather different. For larger values of t this approximation may be less justifiable, and the
possibility would exist that interference effects could modify the above simple predictions.
This problem would be most pronounced for hard πN∆ vertices, however for relatively soft
form factors (Λ <∼ 700 MeV) the above predictions should be a reliable guide.

Although the total unpolarized parton model cross sections are larger than the pion-
exchange cross sections, even at larger values of ζ where the pionic effects are strongest, the
polarization aligned component in the pion model is larger than that in the parton model.
The differences between the pion-exchange model and fragmentation backgrounds can be
further enhanced by examining polarization asymmetries. In Fig.4 we show the difference
σ+ − σ−, where σ± ≡ Q2d3σ(s=±1/2)/dxdQ2dζ , as a fraction of the total unpolarized cross
section, for the two kinematic cases in Figs.2a and 2b (solid = CEBAF kinematics; dashed
= HERMES kinematics). The resulting ζ distributions are almost flat, but significantly
different for the two models (π and qq label the pion-exchange and spectator diquark frag-
mentation models). We have also calculated the ratio for the form factor in Eq.(7b), and find
the results to be almost indistinguishable from those in Fig.4. Therefore, a measurement of
the polarization asymmetry appears to test only the presence of a pionic component of the
nucleon wave function, independent of the details of the form factor.

Of course the two curves in Fig.4 represent extreme cases, in which ∆s are produced
entirely via pion emission or diquark fragmentation. In reality we can expect a ratio of
polarization cross sections which is some average of the curves in Fig.4. The amount of
deviation from the parton model curve will indicate the extent to which the pion-exchange
process contributes. From this, one can in turn deduce the strength of the πN∆ form factor.
Unlike inclusive DIS, which can only be used to place upper bounds on the pion number, the
semi-inclusive measurements could pin down the absolute value of < n >π∆. A measurement
of this ratio would thus be particularly useful in testing the relevance of non-perturbative
degrees of freedom in high energy processes.

V. KAON CLOUD OF THE NUCLEON

Semi-inclusive leptoproduction of polarized Λ hyperons from polarized protons can also
be used to test the relevance of a kaon cloud in the nucleon, Fig.5. The advantage of detecting
Λs in the final state, as compared with ∆ baryons lies in the fact that the Λ is self-analyzing.
It has, in fact, been suggested recently (see Ref. [66]) that measurement of the polarization
of the Λ in the target fragmentation region could discriminate between models of the spin
content of the nucleon, in which a large fraction of the spin is carried either by (negatively
polarized) strange quarks or (positively polarized) gluons. The latter would imply a positive
correlation of the target proton and Λ spins, while the spin projection of the Λ along the
target polarization axis should be negative in the former model. (Similar effects would also
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K cloud and    productionΛ

Pion cloud

some of the time the proton             

π
+

(Heisenberg Uncertainty Principle)

 looks like a neutron &
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FIG. 3: Contributions to the wave function and vertex renormalization of the nucleon matrix

elements of the operators Oµ1...µn

i , i = q,∆q, δq, in Eq. (3). Solid, double and dashed lines denote

nucleon, ∆ and pion propagators and the crossed circle and box indicate the insertion of the relevant

operators. Diagrams ZN
2 and Z∆

2 denote the contributions to wave function renormalization (a

derivative with respect to the external momentum is implied).

The renormalization constants for the spin-independent, helicity and transversity opera-

tors are given by

Z−1
q = 1 + ZNN

1,U + Z∆∆
1,U + Ztad

1,U , (18a)

Z−1
∆q = 1 + ZNN

1,P + ZN∆
1,P + Z∆N

1,P + Z∆∆
1,P + Ztad

1,P + ZNWT
1,P + Z∆WT

1,P , (18b)

Z−1
δq = 1 + ZNN

1,P + ZN∆
1,P + Z∆N

1,P + Z∆∆
1,P +

1

2
Ztad

1,P +
1

2
ZNWT

1,P +
1

2
Z∆WT

1,P . (18c)

The contributions from the coupling to nucleon intermediate states are given by:

ZNN
1,U = − g2

A

(4πfπ)2

∫ ∞

0

k4u2(k)dk

ω3(k)
, (19)

and

ZNN
1,P =

1

3

g2
A

(4πfπ)2

∫ ∞

0

k4u2(k)dk

ω3(k)
, (20)

for the unpolarized and polarized operators, respectively. One can explicitly verify that the

LNA behavior of these contributions is m2
π log m2

π. The ∆ contributions to the unpolarized
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FIG. 5. Kaon-exchange mechanism for the semi-inclusive production of polarized Λ hyperons.
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K cloud and    productionΛ

FIG. 6. Differential Λ production cross section in the K-exchange model, for form factor cut-offs

Λ = 600 (smallest), 800 and 1000 (largest) MeV, for s = +1/2 (upper three curves) and s = −1/2
(lower three curves) final states. Also included are contributions from K+Σ0 states, with the
subsequent decay Σ0 → Λγ.

FIG. 7. Polarization asymmetry for the K-exchange (solid) model of Λ production, com-
pared with a leading fragmentation approximation estimate for the parton fragmentation process

(dashed).
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K cloud and    productionΛ

In SU(6) limit  s quark carries spin of Λ

Λ↑↓
∼ (ud)0 s

↑↓

leading fragmentation
function DΛ

↑↓

ud0(0)

FIG. 6. Differential Λ production cross section in the K-exchange model, for form factor cut-offs

Λ = 600 (smallest), 800 and 1000 (largest) MeV, for s = +1/2 (upper three curves) and s = −1/2
(lower three curves) final states. Also included are contributions from K+Σ0 states, with the
subsequent decay Σ0 → Λγ.

FIG. 7. Polarization asymmetry for the K-exchange (solid) model of Λ production, com-
pared with a leading fragmentation approximation estimate for the parton fragmentation process

(dashed).
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Summary

Production of baryons  (              ) in semi-inclusive DIS 
can reveal signature of t-channel meson exchange

∆
++

, Λ

Provide direct evidence of chiral physics in flavor and 
spin parton distributions of N

Compare with JLab data !





FIG. 7. Splitting function for N → KΛ, fKΛ(y). The solid curve is the light-cone distribution

function, for a vertex function cut-off mass ΛKΛ = 1 GeV; dashed is the instant-form result with
the t-dependent form factor in Eq.(20), which does not satisfy Eq.(3), normalized to give the same

value for 〈n〉KΛ.
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FIGURES

FIG. 1. Strange axial charge of the proton as a function of the hadronic vertex function cut-off

mass, Λ. The solid line is the full result from Eq.(4), while the short-dashed is the uncorrected result
from Eq.(5). The shaded area represents the range for gS

A found in νp and ν̄p elastic scattering

[36], and the two long-dashed lines are the limits on ∆s from deep-inelastic scattering [37].

FIG. 2. Strange – antistrange quark difference in the nucleon, with M-dependent (solid) and

t-dependent (dashed) monopole form factors, each with a Λ = 1 GeV momentum cut-off (giving a
normalisation of 〈n〉KY ≈ 6%).
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FIG. 3. Relative difference between the measured [3] left-right asymmetry, A, and that expected

for zero strangeness, A0. The solid curve is evaluated with the chiral cloud values for GS
E,M with

Λ = 1 GeV.

FIG. 4. Strange electric and magnetic form factor combination as extracted from the HAPPEX

data [3]. The curves are for the chiral cloud model with a form factor cut-off of Λ = 1 GeV.
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Gottfried sum rule

Integrated difference of p and n structure functions

SG =

∫ 1

0

dx
F

p
2
(x) − Fn

2 (x)

x

flavor asymmetric sea!d̄(x) != ū(x)

NMC, Phys. Rev. D 50 (1994) 1

Experiment: SG = 0.235 ± 0.026

=
1

3
+

2

3

∫ 1

0

dx (ū(x) − d̄(x))



Saturation of Gottfried sum rule

d̄ = ū

NMC, Phys. Rev. D 50 (1994) 1


