Semi-Inclusive Reactions Workshop (SIR 2005) JLab, May 20, 2005

Origin of the Nucleon Sea via Target Fragmentation

Wally Melnitchouk Jefferson Lab

Outline

- Motivation: flavor and spin content of ${\cal N}$
- Chiral symmetry
- Semi-inclusive DIS - probe of π (and K) cloud of N
- Outlook

Flavor asymmetry of proton sea

Large $d - \bar{u}$ asymmetry in proton observed in DIS (NMC) and Drell-Yan (CERN NA51 and FNAL E866) experiments

Towell et al., Phys. Rev. D 64 (2001) 052002

Flavor asymmetry of proton sea

Large $d - \bar{u}$ asymmetry in proton observed in DIS (NMC) and Drell-Yan (CERN NA51 and FNAL E866) experiments

Naively expect symmetric sea from pQCD

Large flavor asymmetry reveals importance of *nonperturbative* dynamics (*e.g.* pion cloud)

Why is $\bar{d} \neq \bar{u}$?

Pion cloud

some of the time the proton looks like a neutron & π^+ (Heisenberg Uncertainty Principle)

$$p \to \pi^+ \ n \to p$$

[&]quot;BUT, HEISENBERG - YOU MUST BE CERTAIN ABOUT SOMETHING!"

Sullivan, Phys. Rev. D5 (1972) 1732

Why is $\bar{d} \neq \bar{u}$?

Pion cloud

some of the time the proton looks like a neutron & π^+ (Heisenberg Uncertainty Principle)

$$p \to \pi^+ \ n \to p$$

"BUT, HEISENBERG - YOU MUST BE CERTAIN ABOUT SOMETHING!"

at the quark level

$$uud \to (udd)(\bar{d}u) \to uud$$

Thomas, Phys. Lett. 126B (1983) 97

Pion cloud contributions to flavor asymmetry in proton sea

WM, Speth, Thomas, Phys. Rev. D59 (1998) 014033

good description of data at x < 0.2
 difficult to understand downturn at large x

Why is $\bar{d} \neq \bar{u}$?

Pauli blocking

proton has more valence u than d \implies easier to create $d\overline{d}$ than $u\overline{u}$?

Field, Feynman, Phys. Rev. D15 (1977) 2590

Explicit calculations of antisymmetrization effects in $g \to u \bar{u}$ and $g \to d \bar{d}$

 $u\bar{u}$

 $d\bar{d}$

(a)

u

 asymmetry small

Donoghue, Golowich, Phys. Rev. D15 (1977) 3421 Steffens, Thomas, Phys. Rev. C55 (1997) 900

Why is $\bar{d} \neq \bar{u}$?

Pauli blocking

proton has more valence u than d \implies easier to create $d\overline{d}$ than $u\overline{u}$?

Field, Feynman, Phys. Rev. D15 (1977) 2590

Explicit calculations of antisymmetrization effects in $g\to u\bar{u}$ and $\,g\to d\bar{d}$

→ nonperturbative ??

Ross, Sachrajda, Nucl. Phys. B149 (1979) 497 Steffens, Thomas, Phys. Rev. 55 (1997) 900

Polarization asymmetry of proton sea

Neither pQCD nor meson cloud contribute significantly to $\Delta \bar{d} - \Delta \bar{u}$

<u>But</u> Pauli Exclusion Principle (antisymmetrization) $\longrightarrow \Delta \bar{u} - \Delta \bar{d} \approx \frac{5}{3}(\bar{d} - \bar{u})$

> *Schreiber, Signal, Thomas, Phys. Rev.* D44, 2653 (1991) *Steffens, Phys. Rev.* C55, 900 (1997)

Disentangle origin of unpolarized and polarized asymmetries in sea via *semi-inclusive DIS*

Polarization asymmetry of proton sea

Airapetian et al. [HERMES], Phys. Rev. Lett. 92 (2004) 012005

Pion cloud at high energy

Is there any (more direct) evidence for π cloud in DIS?

Theoretically, a pion cloud component exists in QCD

leading nonanalytic contribution to moments calculated *model-independently* from chiral perturbation theory

Thomas, WM, Steffens, Phys. Rev. Lett. 85 (2000) 2892

Pion cloud at high energy

Is there any (more direct) evidence for π cloud in DIS?

Theoretically, a pion cloud component exists in QCD

* unpolarized only

Pion cloud at high energy

Is there any (more direct) evidence for π cloud in DIS?

Theoretically, a pion cloud component exists in QCD

$$\int dx \ x^n \ (\bar{d} - \bar{u}) = a_n (1 + c_{\ln a} m_\pi^2 \log m_\pi^2) + b_n m_\pi^2 + \cdots$$

$$c_{\ln a} = -(1 + 3g_A^2)/(4\pi f_\pi)^2$$

Detmold et al., Phys. Rev. Lett. 87 (2001) 172001 also Arndt, Savage (2001), Ji, Chen (2001) Semi-inclusive baryon production Look for unique traces of π cloud in SIDIS

Kinematics (target rest frame)

$$t \equiv (P - p)^2 = -p_\perp^2 / \zeta + t_{\text{max}}$$
$$\zeta = p \cdot q / P \cdot q$$
$$t_{\text{max}} = -(M_B^2 - M^2 \zeta)(1 - \zeta) / \zeta$$

lpha angle between γ^* and B

t-channel pion exchange

e.g. Δ production

Differential cross section

t-channel pion exchange

e.g. Δ production

Differential cross section

$$\frac{d^{5}\sigma}{dxdQ^{2}d\zeta dp_{T}^{2}d\phi} \propto \frac{f_{\pi N\Delta}^{2}}{16\pi^{2}m_{\pi}^{2}} \frac{\mathcal{T}^{S\ s}(t)\ \mathcal{F}_{\pi\Delta}^{2}}{(t-m_{\pi}^{2})^{2}} L_{\mu\nu}(l,q)\ W_{\pi}^{\mu\nu}(k,q)$$
$$\mathcal{T}^{S\ s}(t) = \operatorname{Tr}[u(P,S)\bar{u}(P,S)\ u_{\alpha}(p,s)\bar{u}_{\beta}(p,s)](P-p)^{\alpha}(P-p)^{\beta}$$
Rarita-Schwinger (spin-3/2) spin-vector

t-channel pion exchange

spins of target and recoil baryon correlated

S = +1/2 target

 $E = 8 \text{ GeV}, \ x = 0.14, \ Q^2 = 2 \text{ GeV}^2$

$$\mathcal{F}_{\pi\Delta} = \left(\frac{\Lambda^2 + M^2}{\Lambda^2 + s_{\pi\Delta}}\right)^2$$

 $+(M_{\Delta}^2 + p_{\perp}^2)/\zeta$ $\langle n \rangle_{\pi\Delta} \approx \{0.01, 0.02, 0.04\}$

S = +1/2 target

 $E = 8 \text{ GeV}, \ x = 0.14, \ Q^2 = 2 \text{ GeV}^2$

- strong correlation between spins of target p and Δ^{++}

Fragmentation backgrounds

for spectator "diquark" $\rightarrow \Delta^{++}$

At large z dominant fragmentation: $uu \rightarrow \Delta^{++}$

 $D_{uu} \approx \alpha (1-z)^{\beta}$, $\alpha \approx 0.68$, $\beta \approx 0.3$

with $D_{ud} \approx 0.1 D_{uu}$

EMC, Nucl. Phys. B264, 739 (1986)

ζΡ

Spin-dependent fragmentation

Assume "diquark" retains helicity during decay $(q\bar{q} \text{ pair creation independent of struck } q \text{ helicity})$

→ produced baryon contains helicity of "diquark" *e.g.* $q^{\uparrow}q^{\uparrow} \rightarrow \Delta^{\uparrow}$, $q^{\uparrow}q^{\uparrow} \rightarrow \Delta^{\uparrow}$ allowed $q^{\uparrow}q^{\uparrow} \rightarrow \Delta^{\Downarrow}$ not allowed $(\Delta^{\uparrow}q^{\uparrow} \rightarrow \Delta^{\Downarrow} + 1/2) = 1/2 = 2$

 $\{\Uparrow,\uparrow,\downarrow,\Downarrow\} \Longleftrightarrow \{s = +3/2, +1/2, -1/2, -3/2\}$

Use SU(6) symmetry to relate different $qq \rightarrow \Delta^{++}$ fragmentation functions $D^s_{qq_{j(j_z)}}$

$$D_{uu_{1(1)}}^{\uparrow}(z) = 3 \ D_{uu_{1(1)}}^{\uparrow}(z) = \frac{3}{2} D_{uu_{1(0)}}^{\uparrow}(z) = \frac{3}{2} D_{uu_{1(0)}}^{\downarrow}(z)$$

with

$$D^{\uparrow}_{uu_{1(1)}}(z) = \frac{3}{4}D_{uu}(z).$$

single $q\bar{q}$ pair from vacuum

Spin-dependent fragmentation

Assume "diquark" retains helicity during decay $q\bar{q}$ pair creation independent of struck q helicity

→ produced baryon contains helicity of "diquark" *e.g.* $q^{\uparrow}q^{\uparrow} \rightarrow \Delta^{\uparrow}$, $q^{\uparrow}q^{\uparrow} \rightarrow \Delta^{\uparrow}$ allowed $q^{\uparrow}q^{\uparrow} \rightarrow \Delta^{\Downarrow}$ not allowed $\{\uparrow, \uparrow, \downarrow, \Downarrow\} \iff \{s = +3/2, +1/2, -1/2, -3/2\}$

p_{\perp} -integrated cross section

$$\stackrel{\bullet}{\longrightarrow} \frac{d^3 \sigma^{(s)}}{dx dQ^2 d\zeta} = \left(\frac{2\pi \alpha^2}{M^2 E^2 x (1-x)} \right) \left(\frac{1}{2x^2} + \frac{4M^2 E^2}{Q^4} \left(1 - \frac{Q^2}{2MEx} - \frac{Q^2}{4E^2} \right) \right) \\ \times \left[\frac{4x}{9} \left(u_V^{\uparrow} D_{ud_{1(0)}}^s + 2\bar{u}^{\uparrow} \left(\frac{2}{3} D_{uu_{1(1)}}^s + \frac{1}{3} D_{uu_{1(0)}}^s \right) + u_V^{\downarrow} D_{ud_{1(1)}}^s + 2\bar{u}^{\downarrow} \left(\frac{2}{3} D_{uu_{1(1)}}^s + \frac{1}{3} D_{uu_{1(0)}}^s \right) \right) \\ + \frac{x}{9} \left(d_V^{\uparrow} D_{uu_{1(0)}}^s + 2\bar{d}^{\uparrow} \left(\frac{2}{3} D_{uu_{1(1)}}^s + \frac{1}{3} D_{uu_{1(0)}}^s \right) + d_V^{\downarrow} D_{uu_{1(1)}}^s + 2\bar{d}^{\downarrow} \left(\frac{2}{3} D_{uu_{1(1)}}^s + \frac{1}{3} D_{uu_{1(0)}}^s \right) \right) \right]$$

S = +1/2 target

 $E = 8 \text{ GeV}, \ x = 0.14, \ Q^2 = 2 \text{ GeV}^2$

weaker correlation between spins of target p and Δ^{++} from diquark fragmentation

→ Δ^{++} produced in ratio s = +3/2 : +1/2 : -1/2 : -3/2 $\approx 3 : 2 : 1 : 0$

Polarization asymmetry

Differences between π -exchange and fragmentation models enhanced through polarization asymmetries

- * assumes no interference
- \implies deviation from partonic prediction will indicate strength of $\pi\text{-exchange contribution}$
- \implies place <u>lower</u> limit on $\langle n \rangle_{\pi\Delta}$

K cloud and Λ production

SIDIS from K cloud

е

K cloud and Λ production

strong correlation between spins of target p and Λ

... in contrast with $qq \rightarrow \Lambda$ fragmentation

K cloud and Λ production

 $\Lambda^{\uparrow\downarrow}~\sim~(ud)_0~s^{\uparrow\downarrow}$

expect small (zero?) asymmetry from fragmentation

Summary

- Production of baryons (Δ^{++}, Λ) in semi-inclusive DIS can reveal signature of *t*-channel meson exchange
- Provide direct evidence of chiral physics in flavor and spin parton distributions of N
- Compare with JLab data !

WM, Malheiro (1997)

Gottfried sum rule

Integrated difference of p and n structure functions

$$S_G = \int_0^1 dx \ \frac{F_2^p(x) - F_2^n(x)}{x}$$
$$= \frac{1}{3} + \frac{2}{3} \int_0^1 dx \ (\bar{u}(x) - \bar{d}(x))$$

Experiment: $S_G = 0.235 \pm 0.026$

NMC, Phys. Rev. D 50 (1994) 1

 $d(x) \neq \overline{u}(x)$ flavor asymmetric sea!

Saturation of Gottfried sum rule

NMC, Phys. Rev. D 50 (1994) 1