Beam Single Spin Asymmetry in Pion Electroproduction

Semi-Inclusive Reactions Workshop Jefferson Lab, 18-21 May, 2005

Eduard Avetisyan

eduard.avetisyan@desy.de

(Yerevan Physics Institute / INFN Frascati)

Semi Inclusive DIS:

 $\vec{e}p \rightarrow e'hX$

$$\begin{aligned} \sigma(\phi) &= A_0 + A_1 \sin \phi + B_1 \cos \phi + A_2 \sin 2\phi + B_2 \cos 2\phi \dots \\ \frac{\mathrm{d}^3 \sigma_{UU}}{\mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z \, \mathrm{d}\phi} &= \frac{1}{2} \left(\frac{\mathrm{d}^3 \sigma^+}{\mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z \, \mathrm{d}\phi} + \frac{\mathrm{d}^3 \sigma^-}{\mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z \, \mathrm{d}\phi} \right) \\ \frac{2}{P} \frac{\mathrm{d}^3 \sigma_{LU}}{\mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z \, \mathrm{d}\phi} &= \frac{1}{P^+} \frac{\mathrm{d}^3 \sigma^+}{\mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z \, \mathrm{d}\phi} - \frac{1}{P^-} \frac{\mathrm{d}^3 \sigma^-}{\mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z \, \mathrm{d}\phi} \end{aligned}$$

DFs and FFs:

$$\begin{aligned} \text{Factorization} &\Rightarrow \sigma^{eN \to chX} = \sum_{a,\bar{a}} f^{N \to q} \otimes \sigma^{cq \to cq} \otimes D^{q \to h} \\ &\downarrow \\ \text{Distribution} \end{aligned} \\ \begin{aligned} \text{Fragmentation} \end{aligned} \\ \\ \sigma_{unpol} &\equiv \sigma_{UU} \propto (1 - y + y^2/2) \sum_{a,\bar{a}} e_a^2 x f_1^a(x) D_1^a(z) \\ \sigma_{pol} &\equiv \sigma_{UL}, \sigma_{LL}, \sigma_{UT}, \sigma_{LU}, \sigma_{LT} \end{aligned} \\ \\ \\ \hline \text{Beam Target polarization} \\ \\ \sigma_{UL} &\propto S_L \sin \phi (2 - y) \sqrt{1 - y} \frac{M}{Q} \sum_{a,\bar{a}} e_a^2 x^2 h_L^a(x) H_1^{\perp a}(z) + \dots \\ \\ \\ \sigma_{UT} &\propto S_T (1 - y) \sin(\phi + \phi_s) \sum_{a,\bar{a}} e_a^2 x h_1^a(x) H_1^{\perp a}(z) + \dots \\ \\ \\ \sigma_{LU} &\propto \lambda_e \sin \phi y \sqrt{1 - y} \frac{M}{Q} \sum_{a,\bar{a}} e_a^2 x^2 \left[e^a(x) H_1^{\perp a}(z) + h_1^{\perp a}(x) E^a(z) \right] \end{aligned}$$

DFs and FFs:

$$\begin{aligned} \text{Factorization} &\Rightarrow \sigma^{eN \to ehX} = \sum_{i} f^{N \to q} \otimes \sigma^{eq \to eq} \otimes D^{q \to h} \\ &\downarrow \\ \text{Distribution} \end{aligned} \\ \begin{aligned} \text{Fragmentation} \end{aligned} \\ \\ \sigma_{unpol} &\equiv \sigma_{UU} \propto (1 - y + y^2/2) \sum_{a,\bar{a}} e_a^2 x f_1^a(x) D_1^a(z) \\ \text{Fragmentation} \end{aligned} \\ \\ \sigma_{pol} &= \{\sigma_{UL}, \sigma_{LL}, \sigma_{UT}, \sigma_{LU}, \sigma_{LT}\} \\ &\swarrow \end{aligned} \\ \end{aligned} \\ \begin{aligned} \text{Beam Target polarization} \\ \\ \sigma_{UL} &\propto S_L \sin \phi (2 - y) \sqrt{1 - y} \frac{M}{Q} \sum_{a,\bar{a}} e_a^2 x^2 h_L^a(x) H_1^{\perp a}(z) + \dots \\ \\ \sigma_{UT} &\propto S_T (1 - y) \sin(\phi + \phi_s) \sum_{a,\bar{a}} e_a^2 x h_1^a(x) H_1^{\perp a}(z) + \dots \\ \\ \hline \sigma_{LU} &\propto \lambda_e \sin \phi y \sqrt{1 - y} \frac{M}{Q} \sum_{a,\bar{a}} e_a^2 x^2 \left[e^a(x) H_1^{\perp a}(z) + h_1^{\perp a}(x) E^a(z) \right] \end{aligned}$$

A_{LU}	=	$\frac{d\sigma^+ - d\sigma^-}{2} - \frac{d\sigma_{LU}}{2}$		Distribution	Fragmentation
		$d\sigma^+ + d\sigma^- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Twist-2	h_1^\perp	H_1^{\perp}
Λ	26	$e(x)H_1^{\perp}(z) + h_1^{\perp}(x)E(z)$	Twist-3	e	$\longrightarrow E$
ALU	X	$f_1(x)D_1(z)$			

$$A_{LU} = \frac{d\sigma^{+} - d\sigma^{-}}{d\sigma^{+} + d\sigma^{-}} = \frac{d\sigma_{LU}}{d\sigma_{UU}}$$

$$A_{LU} \propto \frac{e(x)H_{1}^{\perp}(z) + h_{1}^{\perp}(x)E(z)}{f_{1}(x)D_{1}(z)}$$

Distribution Fragmentation
Twist-2 h_{1}^{\perp}

$$H_{1}^{\perp}$$

Twist-3 $e^{\leftarrow} E$

$$\sigma_{LU} \propto \lambda_e \sin \phi \, y \sqrt{1 - y} \frac{M}{Q} \sum_{a,\bar{a}} e_a^2 x^2 \left[x z e^a(x) H_1^{\perp a}(z) + h_1^{\perp a}(x) E^a(z) + \frac{M_h}{M} f_1^a(x) G^{\perp a}(z) - x z \frac{M}{M_h} g^{\perp a}(x) D_1^a(z) - \frac{m}{M} z f_1^a(x) H_1^{\perp a}(z) - \frac{m}{M_h} z h_1^{\perp a}(x) D_1^a(z) \right]$$

$$A_{LU} = \frac{d\sigma^{+} - d\sigma^{-}}{d\sigma^{+} + d\sigma^{-}} = \frac{d\sigma_{LU}}{d\sigma_{UU}}$$

$$A_{LU} \propto \frac{e(x)H_{1}^{\perp}(z) + h_{1}^{\perp}(x)E(z)}{f_{1}(x)D_{1}(z)}$$

Distribution Fragmentation
Twist-2 $h_{1}^{\perp} \longrightarrow H_{1}^{\perp}$
Twist-3 $e \longrightarrow E$

$$\sigma_{LU} \propto \lambda_e \sin \phi y \sqrt{1 - y} \frac{M}{Q} \sum_{a,\bar{a}} e_a^2 x^2 \left[x z e^a(x) H_1^{\perp a}(z) + h_1^{\perp a}(x) E^a(z) + \frac{M_h}{M} f_1^a(x) G^{\perp a}(z) - x z \frac{M}{M_h} g^{\perp a}(x) D_1^a(z) - \frac{m}{M} z f_1^a(x) H_1^{\perp a}(z) - \frac{m}{M_h} z h_1^{\perp a}(x) D_1^a(z) \right]$$

$$A_{LU} = \frac{d\sigma^{+} - d\sigma^{-}}{d\sigma^{+} + d\sigma^{-}} = \frac{d\sigma_{LU}}{d\sigma_{UU}}$$

$$A_{LU} \propto \frac{e(x)H_{1}^{\perp}(z) + h_{1}^{\perp}(x)E(z)}{f_{1}(x)D_{1}(z)}$$

Distribution Fragmentation
Twist-2 h_{1}^{\perp}

$$H_{1}^{\perp}$$

Twist-3 $e^{\leftarrow} E$

$$\sigma_{LU} \propto \lambda_e \sin \phi \, y \sqrt{1 - y} \frac{M}{Q} \sum_{a,\bar{a}} e_a^2 x^2 \left[x z e^a(x) H_1^{\perp a}(z) + h_1^{\perp a}(x) E^a(z) + \frac{M_h}{M} f_1^a(x) G^{\perp a}(z) - x z \frac{M}{M_h} g^{\perp a}(x) D_1^a(z) - \frac{m}{M} z f_1^a(x) H_1^{\perp a}(z) - \frac{m}{M_h} z h_1^{\perp a}(x) D_1^a(z) \right]$$

$$A_{LU} = \frac{d\sigma^{+} - d\sigma^{-}}{d\sigma^{+} + d\sigma^{-}} = \frac{d\sigma_{LU}}{d\sigma_{UU}}$$

$$A_{LU} \propto \frac{e(x)H_{1}^{\perp}(z) + h_{1}^{\perp}(x)E(z)}{f_{1}(x)D_{1}(z)}$$

Distribution Fragmentation
Twist-2 h_{1}^{\perp}

$$H_{1}^{\perp}$$

Twist-3 $e^{\leftarrow} E$

$$\sigma_{LU} \propto \lambda_e \sin \phi \, y \sqrt{1 - y} \frac{M}{Q} \sum_{a,\bar{a}} e_a^2 x^2 \left[x z e^a(x) H_1^{\perp a}(z) + h_1^{\perp a}(x) E^a(z) + \frac{M_h}{M} f_1^a(x) G^{\perp a}(z) - x z \frac{M}{M_h} g^{\perp a}(x) D_1^a(z) - A_{LU}^{jet} - \frac{m}{M} z f_1^a(x) H_1^{\perp a}(z) - \frac{m}{M_h} z h_1^{\perp a}(x) D_1^a(z) \right]$$

HERA setup:

HERMES Spectrometer:

Beam SSA at HERMES

Beam SSA at HERMES

Asymmetry extraction:

$$A_{LU}^{\pm} = \frac{1}{P^{\pm}N^{\pm}} \sum_{i=1}^{N^{\pm}} \sin \phi$$

Fit method:

$$A(\phi) = \frac{N^+ L^- - N^- L^+}{N^+ L^- P^- + N^- L^+ P^+}$$

Beam SSA at HERMES

Comparison with CLAS:

In leading order (neglecting σ_L/σ_T):

$$f(y) = \frac{\sqrt{2(1-y)}}{1-y+y^2/2}$$

Strong kinematic suppression factor in HERMES ($0.7 \rightarrow 0.35$ at higher z) roughly constant ($f(y) \simeq 0.7$) in CLAS.

Comparison with CLAS(cont.):

In leading order (neglecting σ_L/σ_T):

$$f(y) = \frac{\sqrt{2(1-y)}}{1-y+y^2/2}$$

Strong kinematic suppression factor in HERMES ($0.7 \rightarrow 0.35$ at higher z) roughly constant ($f(y) \simeq 0.7$) in CLAS.

Comparison with Theory:

L.Gamberg, D.Hwang, K.Oganessyan, Phys. Lett. B584 (2004) 276, (hep-ph/0311221) Quark-diquark spectator model, $e(x)H_1^{\perp}(z)$ dominant; F.Yuan, Phys.Lett. B589 (2004) 28-34, (hep-ph/0310279) Chiral quark model, $h_1^{\perp}(x)E(z)$ contribution only.

Comparison with Theory (CLAS):

Future:

CLAS 12GeV upgrade \iff HERMES Recoil upgrade

Conclusions and Outlook:

- First measurement of Beam SSA for all pions
- Independent source of information about H_1^{\perp} Collins function
- Possibility to access a set of new DFs and FFs
- Agreement with CLAS measurement of BSA for π^+ (after kinematic range corrections)
- Agreement with some theoretical model calculation

Still to come:

- HERA run II with >3M of DIS on hydrogen
- HERMES with Recoil high lumi data + better separation of exclusive channels
- CLAS 12GeV upgrade wider kinematic range, more statistics

Backup slides

The asymmetry of ρ^0 decay products (from data) and their contamination in the pion sample:

