DEEPLY VIRTUAL COMPTON SCATTERING STUDIES AT HERMES

FRANK ELLINGHAUS UNIVERSITY OF COLORADO FOR THE HERMES–COLLABORATION SIR 2005, JLAB, USA, MAY 2005

- GPDs, DVCS and BH
- AZIMUTHAL ASYMMETRIES AT HERMES
 - The GPD H via BSA and BCA
 - The GPD \widetilde{H} via LTSA
 - The GPD E via TTSA
- Summary and Outlook

GENERALIZED PARTON DISTRIBUTIONS (GPDs) ACCESSIBLE IN EXCLUSIVE REACTIONS \Rightarrow Use the simplest/cleanest one ... Simplest/cleanest (hard exclusive) process: $\gamma^* p \rightarrow p' \gamma$

DEEPLY VIRTUAL PHOTON GENERATED BY LEPTON SCATTERING $\Rightarrow e p \rightarrow e' p' \gamma$ (DVCS)

• LONGITUDINAL MOMENTUM FRACTIONS: $x \in [-1, 1]$ (NOT ACCESSIBLE) $\xi \approx x_B/(2 - x_B)$

•
$$t = (q - q')^2$$

 $(\gamma^* \to \gamma \text{ MOMENTUM TRANSFER})$

•
$$Q^2 = -q^2$$

 \Rightarrow Measurements as function of x_B , t, Q^2

DVCS FINAL STATE $e + p \rightarrow e' + p' + \gamma$ is indistinguishable from the Bethe-Heitler Process (BH) \rightarrow Amplitudes add coherently

$$d\sigma \propto \left|\tau_{\rm DVCS} + \tau_{\rm BH}\right|^2 = \left|\tau_{\rm DVCS}\right|^2 + \left|\tau_{\rm BH}\right|^2 + \underbrace{\left(\tau_{\rm DVCS}^* \tau_{\rm BH} + \tau_{\rm BH}^* \tau_{\rm DVCS}\right)}_{I}$$

$$d\sigma \propto |\tau_{\rm BH}|^2 + \underbrace{(\tau_{\rm DVCS}^* \tau_{\rm BH} + \tau_{\rm BH}^* \tau_{\rm DVCS})}_{I} + |\tau_{\rm DVCS}|^2$$

 $|\tau_{\rm BH}|^2$ calculable in QED with the knowledge of the form factors $I \propto \pm \left(c_0^I + \sum_{n=1}^3 c_n^I \cos(n\phi) + \lambda \sum_{n=1}^3 s_n^I \sin(n\phi)\right)$

DVCS CROSS SECTION: MEASUREMENT INTEGRATED OVER ϕ $\rightarrow I = 0$ (AT TWIST-2), SUBTRACT $|\tau_{\rm BH}|^2$

AZIMUTHAL ASYMMETRIES: DVCS AMPLITUDES DIRECTLY ACCESSIBLE VIA I (GPDS ENTER IN LINEAR COMBINATIONS IN AMPLITUDES)

$$I \propto \pm \left(c_0^I + \sum_{n=1}^3 c_n^I \cos(n\phi) + \lambda \sum_{n=1}^2 s_n^I \sin(n\phi) \right)$$

 $\begin{array}{ll} \text{BEAM-CHARGE ASYMMETRY (BCA) AND BEAM-SPIN ASYMMETRY (BSA)} \\ \text{BCA}: & d\sigma(e^+p) - d\sigma(e^-p) \sim c_{1,unp}^I\cos(\phi) \sim \cos(\phi) \times \operatorname{Re} M_{unp}^{1,1} \\ \text{BSA}: & d\sigma(\overrightarrow{e^+}p) - d\sigma(\overleftarrow{e^+}p) \sim s_{1,unp}^I\sin(\phi) \sim \sin(\phi) \times \operatorname{Im} M_{unp}^{1,1} \\ (\text{HIGHER TWIST/ORDER} \to \cos 2\phi, \cos 3\phi, \sin 2\phi) \\ M_{unp}^{1,1} = F_1(t) H_1(\xi,t) + \frac{x_B}{2-x_B}(F_1(t) + F_2(t)) \widetilde{H}_1(\xi,t) - \frac{t}{4M^2}F_2(t) E_1(\xi,t) \\ \langle x_B \rangle, \langle -t \rangle \approx 0.1 \Rightarrow \operatorname{CFF} H_1 \Rightarrow \operatorname{GPD} H \end{array}$

LONGITUDINAL TARGET-SPIN ASYMMETRY (LTSA) LTSA: $d\sigma(e^{+}\overleftarrow{p}) - d\sigma(e^{+}\overrightarrow{p}) \sim s_{1,LP}^{I}\sin(\phi) \sim \sin(\phi) \times \operatorname{Im} M_{LP}^{1,1}$ (HIGHER TWIST/ORDER $\rightarrow \sin 2\phi, \sin 3\phi$)

$$M_{LP}^{1,1} = \frac{x_B}{2 - x_B} (F_1 + F_2) \left(H_1 + \frac{x_B}{2} E_1 \right) + F_1 \widetilde{H}_1 - \frac{x_B}{2 - x_B} \left(\frac{x_B}{2} F_1 + \frac{t}{4M^2} F_2 \right) \widetilde{E}_1$$

 $\langle x_B \rangle, \langle -t \rangle \approx 0.1 \Rightarrow \text{CFF } \widetilde{H}_1 \Rightarrow \text{GPD } \widetilde{H}$

HERMES EVENT SELECTION

- EVENTS WITH EXACTLY ONE DIS-POSITRON/DIS-ELECTRON AND ONE TRACKLESS CLUSTER IN THE CALORIMETER
- CUTS ON SCATTERED LEPTON: $Q^2 > 1 \text{ GeV}^2, \ldots$
- PHOTON SELECTION: $\theta_{\gamma^*\gamma} < 45 \text{ mrad}, E_{\gamma} > 5 \text{ GeV}, \ldots$
- No recoil detection (yet) \Rightarrow Exclusivity via missing mass \Rightarrow MC

Resolution \Rightarrow MC for background and cuts!

PROCESSES TAKEN INTO ACCOUNT:

- ELASTIC BH/DVCS $(e p \rightarrow e' p' \gamma)$
- ASSOCIATED BH/DVCS (MAINLY $e p \rightarrow e' \Delta^+ \gamma$)
- SEMI-INCLUSIVE (MAINLY $e p \rightarrow e' \pi^0 X$)

 \Rightarrow "EXCLUSIVE" BIN (-1.5 < M_x < 1.7 GeV)

 \Rightarrow Overall background contribution $\approx 15\%$

No radiative corrections to $\rm BH/DVCS$ in MC generator, no solid estimates available \ldots

BEAM-SPIN ASYMMETRY (BSA)

A^{sin} ALU v C $\overrightarrow{\mathbf{e}}^{+}\mathbf{p} \rightarrow \mathbf{e}^{+}\gamma \mathbf{X}$ 0.2 **HERMES PRELIMINARY 2000** 0.1 (refined analysis) 0 -0.1 -0.2 -0.3 -0.4 $A_{LU}^{\sin \phi} \Big|_{M_{\chi} < 1.7 \text{ GeV}}$ = -0.18 \pm 0.03 (stat) \pm 0.03 (sys) -0.5 $<-t> = 0.18 \text{ GeV}^2, <x_B> = 0.12, <Q^2> = 2.5 \text{ GeV}^2$ -0.6 M_v (GeV) $\sin(\phi)$ -Moment in non-exclusive

REGION: SMALL AND SLIGHTLY POSITIVE $(\rightarrow \pi^0)$

(Results from $1996/97 \rightarrow \text{PRL } \mathbf{87}, 182001 \ (2001))$

BEAM-CHARGE ASYMMETRY (BCA)

$$A_{\rm C}(\phi) = \frac{N^+(\phi) - N^-(\phi)}{N^+(\phi) + N^-(\phi)} \propto I \propto \pm (c_0^I + \sum_{n=1}^3 c_n^I \cos(n\phi) + \lambda \sum_{n=1}^2 s_n^I \sin(n\phi))$$

 $\begin{array}{l} A_{\rm C} \text{ in exclusive bin: Expected} \\ \cos(\phi) \text{ dependence } \Rightarrow \operatorname{Re} M_{unp}^{1,1} \\ \sin \phi \text{ due to polarized beam} \end{array}$

 $\cos(\phi)$ -Moments zero at higher Missing mass

BEAM-CHARGE ASYMMETRY (BCA) ON DEUTERIUM

0.4

- $A_C^{\cos\phi}(d) \approx A_C^{\cos\phi}(p)$
- Spin-1 particle \rightarrow 9 GPDs, but Coherent production only $\approx 20\%$
- 40% coherent in First T-Bin \Rightarrow NO TENSOR EFFECT SEEN \Rightarrow Data can (indeed) be combined

HERMES PRELIMINARY

TINY e^-p SAMPLE ($L \approx 10 \text{ pB}^{-1}$)

Coherent production on d only in first t-bin ($\approx 40\%$)

- \Rightarrow No effect seen
- $\rightarrow \approx \text{P-TARGET}$

Possible difference in last bin $(\rightarrow \text{NEUTRON})$

GPD MODEL (VANDERHAEGHEN ET AL.) CALC. AT AVERAGE KINEMATIC VA-LUES PER BIN

Data averaged over x_B , Q^2 range \rightarrow Model curves can change up to 20% (model dep.) when calc. At real events kinematics

IF MULTIDIMENSIONAL BINNING POSSIBLE (STATISTICS !) OR FAST GENERATOR/LOOKUP-TABLE AVAILABLE

 \Rightarrow *t*-dependence of BCA has high sensitivity to GPD models!

Recoil Detector and unpol. Targets (2006/2007)

- ENSURES EXCLUSIVITY OF EVENTS
 - Semi-inclusive background 5% \Rightarrow \ll 1%
 - Associated background $10\% \Rightarrow \approx 1\%$

 \Rightarrow Essential at larger -t values

THE GPD H, SUMMARY AND OUTLOOK

 \triangle : HERMES PRELIM./PUBLISHED

 \triangle : CLAS, PRL, 2001 (× - 1)

• Hydrogen data (1996-2000), Analysis almost completed

BCA: HIGH SENSITIVITY TO *t*-DEPENDENCE (FACT./REGGE) AND D-TERM

BSA: HIGHEST SENSITIVITY TO b_s PARAMETER IN PROFILE FUNCTION

Possibility to "map out" GPD H^u in the final two HERA years.

The GPD \tilde{H} , Long. Target-Spin Asymmetry (LTSA)

$$A_{\rm UL}(\phi) = \frac{1}{\langle |P_T| \rangle} \frac{\overleftarrow{N}(\phi) - \overrightarrow{N}(\phi)}{\overleftarrow{N}(\phi) + \overrightarrow{N}(\phi)}$$

The GPD \tilde{H} , Long. Target-Spin Asymmetry (LTSA)

- No effect seen from 40% coherent contribution in first bin
- DIFFERENCE AT HIGHER -t \Rightarrow DIFFERENT ASYMMETRY ON THE NEUTRON WHEN COMP. TO PROTON
- $A_{UL}^{\sin 2\phi} \Rightarrow$ Difference due to missing QGQ twist-3 in the models?

What about the GDP E ?

 A_{UT} : UNPOLARIZED BEAM, TRANSVERSELY POL. TARGET Data taking with transverse Hydrogen target in progress $\dots \approx 6$ million on tape

PROJECTION FOR TRANSVERSE TARGET

Based on 8 million DIS, Target Pol. = 75 %

CHANGE MODEL PARAMETERS ONLY FOR $E (\rightarrow J_u)$ \rightarrow ONLY $A_{UT}^{\sin(\phi-\phi_s)\cos\phi}$ SENSITIVE AFTER GPD H^u WELL KNOWN \Rightarrow

• E=0 "BASELINE" KNOWN

• SOME/MANY MODEL PARAME-TERS ARE THE SAME FOR H AND E ?!?

Models show same kinematic dependences \Rightarrow integrate over kinematics

 4σ difference (total exp unc.) between $J_u = 0.4$ and 0.0

SUMMARY

- Not shown: BSA on D, Ne (hep-ex/0212019) and Kr averaged over kinematics, t-dependences (i.e coherent/incoherent separation) to come...
- Results shown mostly in agreement with basic models and assumptions.
- NEEDED: FAST DVCS/BH GENERATORS INCLUDING RADIATIVE CORREC-TIONS AND MAYBE 'REAL' TWIST-3
- AZIMUTHAL ASYMMETRIES AT HERMES:
 - GPD H: "MAP OUT" GPD H^u in the final two HERA years, BCA ESPECIALLY SENSITIVE TO MODEL PARAMETERS
 - GPD \tilde{H} : Different asymmetry on the neutron and proton, $A_{UL}^{\sin 2\phi}$ hint on twist-3?
 - GPD E: FIRST GLIMPSE ON GPD E^u and thus on J_u possible

