

on behalf of the HERMES Collaboration SIR 2005 JLab, May 2005

- Exclusive Reactions and GPDs
- \checkmark Exclusive π^+ production
- \checkmark Exclusive ρ^0 and ϕ production
- ✓ Exclusive $\pi^+\pi^-$ production
- Summary and Outlook

GPDs offer most complete description of quark-gluon structure of hadrons

GPDs offer most complete description of quark-gluon structure of hadrons

Ji sum rule

 $J_q = \lim_{t \to 0} \int_{-1}^{+1} x dx \left[H_q(x,\xi,t) + E_q(x,\xi,t) \right]$

Quantum numbers of final meson state select different GPDsPseudoscalar mesons ($\pi, \eta...$): \tilde{H}, \tilde{E}

• Vector mesons ($\rho, \omega, \phi...$): H, E (flavour singlet)

♦ *f*-meson family ($f_0, f_2, ...$): H, E (flavour non-singlet)

Pseudoscalar Mesons

Sensitivity to \tilde{H} and \tilde{E}

the non-exclusive bg

500

8

Missing Mass² (GeV²)

Measurement of the cross-section: $\sim (\tilde{H}+\tilde{E})^2$

X_section extracted after proper tuning of exclusive MC in the HERMES acceptance

Hard Exclusive π^+ ProductionMeasurement of the cross-section: $\sim (\tilde{H} + \tilde{E})^2$ * X_section extracted after proper tuning of exclusive MCin the HERMES acceptanceGPDs framework

- Vanderhaeghen, Guichon & Guidal (1999) - in terms of: H & E

Measurement of the cross-section

$$\sigma^{\gamma^{\star}p\longrightarrow\pi^{+}n}(x,Q^{2}) = \frac{N_{\pi^{+}}^{excl}}{L\Delta x \Delta Q^{2}\Gamma(x,Q^{2})\kappa(x,Q^{2})}$$

Measurement of the cross-section

Measurement of the cross-section

Q² dependence qualitatively in agreement with the data
Ieading order calculations underestimate data
Power correction calculations overestimate the data

Transverse Target Spin Asymmetry: $\sim \tilde{E} \cdot \tilde{H}$

$$A_{UT}(\phi - \phi_S) \propto \frac{N_{excl}^{\uparrow}(\phi - \phi_S) - N_{excl}^{\downarrow}((\phi - \phi_S))}{N_{excl}^{\uparrow}((\phi - \phi_S) + N_{excl}^{\downarrow}((\phi - \phi_S)))}$$

Transverse Target Spin Asymmetry

 $\sigma^{\gamma^{\star}p\longrightarrow\pi^{+}n}\sim \tilde{E}\cdot\tilde{H}$

Transverse Target Spin Asymmetry

$$\Delta \sigma^{\gamma^{\star}p \longrightarrow \pi^{+}n} \sim \tilde{E} \cdot \tilde{H}$$

- Frankfurt, Polybitsa, Polyakov & Strikman (1999) -

Riccardo Fabbri

Analysis of exclusive \(\pi^o\) production on unpolarized proton target ongoing

rightarrow predicted sensitivity to E

Analysis of exclusive \(\pi^\)^o production on unpolarized proton target ongoing

no pion-pole contribution in \tilde{E} predicted sensitivity to \tilde{E}

- Mankiewicz et. al. (1999) -

Vector Mesons

Sensitivity to H and Ein favour singlet state $\implies C = +1$

Extraction of the exclusive sample

- **♦ Detection:** $e^+, \pi^+\pi^-$
- Recoil proton reconstructed

via Missing Energy ΔE

Use of SIDIS MC to subtract

the non-exclusive bg

Measurement of the cross-section σ_L

$$\gamma_L^\star p \longrightarrow p \rho^o$$

Measurement of the cross-section σ_L

 $\bullet \sigma_L$ extraction from decomposition of decay-angle distributions:

$$R = \frac{\sigma_L}{\sigma_T} = \frac{1}{\epsilon} \frac{r_{00}^{04}}{1 - r_{00}^{04}}$$

Measurement of the cross-section σ_L

 $\bullet \sigma_L$ extraction from decomposition of decay-angle distributions:

$$R = \frac{\sigma_L}{\sigma_T} = \frac{1}{\epsilon} \frac{r_{00}^{04}}{1 - r_{00}^{04}}$$

agreement with proton world data

– p.12

Measurement of the cross-section σ_L

Measurement of the cross-section σ_L

Hard Exclusive ρ^{o} Production Measurement of the cross-section σ_L $[qn] (d_0 d$ $- \langle Q^2 \rangle = 2.3 \text{ GeV}^2 + \langle Q^2 \rangle = 4.0 \text{ GeV}^2$ 10^{0} $R = \frac{\sigma_L}{\sigma_T} = \frac{1}{\epsilon} \frac{r_{00}^{04}}{1 - r_{00}^{04}}$ ک^{⊂ 10} **HERMES Preliminary** 10-1 NMC $\sigma_L(\gamma^*p$ E665 **☆ H1** △ ZEUS HERMES ¢ E665 1 10^{1} 10^{1} W [GeV GPD calculations in terms of H & E- Vanderhaeghen Guidhon & Guidal -10 -1 10 10 $\bullet q\bar{q}$ -exchange Q² (GeV²) But - Diehl (2005) - : possibly sizable might dominate at HERMES contribution from gluons in HERMES

Transverse Target Spin Asymmetry A_{UT}

Transverse Target Spin Asymmetry A_{UT}

$$A_{UT}(\phi - \phi_S) = \frac{\sigma^{\uparrow}(\phi - \phi_S) - \sigma^{\downarrow}(\phi - \phi_S)}{\sigma^{\uparrow}(\phi - \phi_S) + \sigma^{\downarrow}(\phi - \phi_S)}$$

Hard Exclusive ρ^o ProductionTransverse Target Spin Asymmetry A_{UT} $A_{UT}(\phi - \phi_S) = \frac{\sigma^{\uparrow}(\phi - \phi_S) - \sigma^{\downarrow}(\phi - \phi_S)}{\sigma^{\uparrow}(\phi - \phi_S) + \sigma^{\downarrow}(\phi - \phi_S)} = \frac{\sigma_P}{\sigma_0} \cdot \sin(\phi - \phi_S)$

Transverse Target Spin Asymmetry A_{UT}

$$A_{UT}(\phi - \phi_S) = \frac{\sigma^{\uparrow}(\phi - \phi_S) - \sigma^{\downarrow}(\phi - \phi_S)}{\sigma^{\uparrow}(\phi - \phi_S) + \sigma^{\downarrow}(\phi - \phi_S)} = \frac{\sigma_P}{\sigma_0} \cdot \sin(\phi - \phi_S)$$
$$\mathcal{A} = \frac{\int_0^{\pi} d\beta \sigma(\beta) - \int_{\pi}^{2\pi} d\beta \sigma(\beta)}{\int_0^{\pi} d\beta \sigma(\beta) + \int_{\pi}^{2\pi} d\beta \sigma(\beta)}$$

Transverse Target Spin Asymmetry A_{UT}

$$A_{UT}(\phi - \phi_S) = \frac{\sigma^{\uparrow}(\phi - \phi_S) - \sigma^{\downarrow}(\phi - \phi_S)}{\sigma^{\uparrow}(\phi - \phi_S) + \sigma^{\downarrow}(\phi - \phi_S)} = \frac{\sigma_P}{\sigma_0} \cdot \sin(\phi - \phi_S)$$
$$\mathcal{A} = \frac{\int_0^{\pi} d\beta \sigma(\beta) - \int_{\pi}^{2\pi} d\beta \sigma(\beta)}{\int_0^{\pi} d\beta \sigma(\beta) + \int_{\pi}^{2\pi} d\beta \sigma(\beta)} = \frac{2}{\pi} \cdot \frac{\sigma_P}{\sigma_0}$$

Hard Exclusive ρ^o Production Transverse Target Spin Asymmetry A_{UT}

$$A_{UT}(\phi - \phi_S) = \frac{\sigma^{\dagger}(\phi - \phi_S) - \sigma^{\downarrow}(\phi - \phi_S)}{\sigma^{\uparrow}(\phi - \phi_S) + \sigma^{\downarrow}(\phi - \phi_S)} = \frac{\sigma_P}{\sigma_0} \cdot \sin(\phi - \phi_S)$$
$$\mathcal{A} = \frac{\int_0^{\pi} d\beta \sigma(\beta) - \int_{\pi}^{2\pi} d\beta \sigma(\beta)}{\int_0^{\pi} d\beta \sigma(\beta) + \int_{\pi}^{2\pi} d\beta \sigma(\beta)} = \frac{2}{\pi} \cdot \frac{\sigma_P}{\sigma_0} = \frac{2}{\pi} \cdot A_{UT} \sin(\phi - \phi_S)$$

X_B SIR 2005

X_B SIR 2005

SIR 2005

Transverse Target Spin Asymmetry A_{UT}

• No σ_L separation yet!

• No σ_L separation yet!

Measurement of the cross-section σ_L

$$\gamma_L^{\star} p \longrightarrow p \phi \longrightarrow p K^+ K^-$$

\clubsuit analysis procedure as for ρ^o \clubsuit

Measurement of the cross-section σ_L

Measurement of the cross-section σ_L

Riccardo Fabbri

Measurement of the cross-section σ_L

$$\frac{2}{9} \sim \frac{\sigma_{\phi}(2g \; exchange)}{\sigma_{\rho}(2g \; exchange)}$$

rightarrow with only 2g-exchange mechanism for ho^o

 σ_{ϕ} $\sigma_{
ho}$

$$\frac{2}{9} \sim \frac{\sigma_{\phi}(2g \; exchange)}{\sigma_{\rho}(2g \; exchange)}$$

$$\geq \frac{\sigma_{\phi}(2g \; exchange)}{\sigma_{\rho}(2g \; exchange + q\bar{q} \; exchange)}$$

rightarrow with only 2g-exchange mechanism for ho^o

$$\frac{2}{9} \sim \frac{\sigma_{\phi}(2g \; exchange)}{\sigma_{\rho}(2g \; exchange)}$$

 $\geq \frac{\sigma_{\phi}(2g \; exchange)}{\sigma_{\rho}(2g \; exchange + q\bar{q} \; exchange)}$

Pion Pairs and f-meson Family

Sensitivity to H and Ein favour non-singlet state $\implies C = -1$

Hard Exclusive Production of $\pi^+\pi^-$

 $\gamma_L^{\star} p \longrightarrow p \pi^+ \pi^- | \gamma_L^{\star} d \longrightarrow d \pi^+ \pi^- \rangle$

Hard Exclusive Production of $\pi^+\pi^-$

Which channels may contribute?

Example: $\bullet \rho^0$: $I(J^{PC})=1(1^{--})$

Hard Exclusive Production of $\pi^+\pi^-$

 $I(J^{PC})=0(0^{++})$

♦ f_2 : $I(J^{PC})=0(2^{++})$

Which channels may contribute?

How to highlight the elusive *f*-meson family channel?

How to highlight the elusive *f*-meson family channel?

$\frac{d\sigma^{\pi^+\pi^-}}{d\cos\theta} \propto \sum_{JJ'\lambda\lambda'} \rho^{JJ'}_{\lambda\lambda'} Y_{J\lambda}(\theta,\phi) Y^{\star}_{J'\lambda'}(\theta,\phi)$

How to highlight the elusive *f*-meson family channel?

How to highlight the elusive *f*-meson family channel?

$$\frac{d\sigma^{\pi^+\pi^-}}{d\cos\theta} \propto \sum_{JJ'\lambda\lambda'} \rho^{JJ'}_{\lambda\lambda'} Y_{J\lambda}(\theta,\phi) Y^{\star}_{J'\lambda'}(\theta,\phi)$$

Legendre Moments:

$$\langle P_l(\cos\theta) \rangle^{\pi^+\pi^-} = \frac{\int_{-1}^1 d\cos\theta P_l(\cos\theta) \frac{d\sigma^{\pi^+\pi^-}}{d\cos\theta}}{\int_{-1}^1 d\cos\theta \frac{d\sigma^{\pi^+\pi^-}}{d\cos\theta}}$$

How to highlight the elusive *f*-meson family channel?

$$\frac{d\sigma^{\pi^{+}\pi^{-}}}{d\cos\theta} \propto \sum_{JJ'\lambda} \lambda \rho_{\lambda\lambda'}^{JJ'} I_{J\lambda}(\theta,\phi) Y_{J'\lambda'}^{\star}(\theta,\phi)$$
Legendre Moments:

$$\langle P_{l}(\cos\theta) \rangle^{\pi^{+}\pi^{-}} = \frac{\int_{-1}^{1} d\cos\theta P_{l}(\cos\theta) \frac{d\sigma^{\pi^{+}\pi^{-}}}{d\cos\theta}}{\int_{-1}^{1} d\cos\theta \frac{d\sigma^{\pi^{+}\pi^{-}}}{d\cos\theta}} \qquad N'$$

How to highlight the elusive *f*-meson family channel?

$$\frac{d\sigma^{\pi^{+}\pi^{-}}}{d\cos\theta} \propto \sum_{JJ'\lambda\lambda'} \rho_{\lambda\lambda'}^{JJ'} Y_{J\lambda}(\theta,\phi) Y_{J'\lambda'}^{\star}(\theta,\phi)$$
Legendre Moments:
 $\langle P_{l}(\cos\theta) \rangle^{\pi^{+}\pi^{-}} = \frac{\int_{-1}^{1} d\cos\theta P_{l}(\cos\theta) \frac{d\sigma^{\pi^{+}\pi^{-}}}{d\cos\theta}}{\int_{-1}^{1} d\cos\theta \frac{d\sigma^{\pi^{+}\pi^{-}}}{d\cos\theta}}$
N'
 $\langle P_{1}(\cos\theta) \rangle = \frac{1}{\sqrt{15}} \left[\underbrace{4\sqrt{3}\rho_{11}^{21} + 4\rho_{00}^{21}}_{tensor-vector} + 2\sqrt{5}\rho_{00}^{10}}_{tensor-vector} \right]$

A highlighting elusive *f*-meson family channel through its interference with dominating ρ^o -meson
Sensitivity to the interference by measuring $\langle P_1(\cos \theta) \rangle$

 $m_{\pi\pi}$ -dependence of $\langle P_1(cos heta) \rangle$

 $m_{\pi\pi}$ -dependence of $\langle P_1(cos\theta) \rangle$

Interference between non-resonant S-wave and lower ρ^0 tail $m_{\pi\pi} < 0.6 \, {\rm GeV}$

 $m_{\pi\pi}$ -dependence of $\langle P_1(cos\theta) \rangle$

 $m_{\pi\pi}$ -dependence of $\langle P_1(cos\theta) \rangle$

 $m_{\pi\pi}$ -dependence of $\langle P_1(cos\theta)$

◆ B.Lehmann-Dronke, P.V.Pobylitsa, M.V.Polyakov, A.Schäfer, K.Goeke:

 ^C Phys. Lett. B 475, (2000) 147,
 ^D gluon GPD neglected
 ^C Phys.Rev. D 63, (2001) 114001,
 ^D with gluon GPD in the nucleon

 $m_{\pi\pi}$ -dependence of $\langle P_1(cos\theta)$

◆ B.Lehmann-Dronke, P.V.Pobylitsa, M.V.Polyakov, A.Schäfer, K.Goeke:

 ^C Phys. Lett. B 475, (2000) 147,
 ^D gluon GPD neglected
 ^C Phys.Rev. D 63, (2001) 114001,
 ^D with gluon GPD in the nucleon

x-dependence of $\langle P_1(cos\theta)$

x-dependence of $\langle P_1(cos\theta)$

Increasing interference vs increasing x between non-resonant S-wave and ρ^0 \Rightarrow increased contribution of non-singlet $q\bar{q}$ exchange

x-dependence of $\langle P_1(cos\theta) \rangle$

◆ B.Lehmann-Dronke, P.V.Pobylitsa, M.V.Polyakov, A.Schäfer, K.Goeke:
☞ Phys. Lett. B 475, (2000) 147 ⇒ gluon GPD neglected

x-dependence of $\langle P_1(cos\theta) \rangle$

◆ B.Lehmann-Dronke, P.V.Pobylitsa, M.V.Polyakov, A.Schäfer, K.Goeke:
☞ Phys. Lett. B 475, (2000) 147 ⇒ gluon GPD neglected

Reasonable agreement of theory with data

Several hard exclusive meson production channels measured

Several hard exclusive meson production channels measured

Interpreted in the GPD framework

Several hard exclusive meson production channels measured

Interpreted in the GPD framework

rightarrow exclusive π^+ :

Several hard exclusive meson production channels measured

Interpreted in the GPD framework

rightarrow exclusive π^+ :

 $\checkmark \sigma_{tot}$ extracted:

Several hard exclusive meson production channels measured

Interpreted in the GPD framework

rightarrow exclusive π^+ :

 $\checkmark \sigma_{tot}$ extracted:

 \implies might constrain \tilde{H} & \tilde{E}

Several hard exclusive meson production channels measured

Interpreted in the GPD framework

rightarrow exclusive π^+ :

✓ σ_{tot} extracted: ⇒ might constrain $\tilde{H} \& \tilde{E}$ ✓ Analysis on Transv.Target SSA ✓ $\sigma_{\pi^+}/\sigma_{\pi^o}$: predicted sensitivity to \tilde{E}

...coming soon

Several hard exclusive meson production channels measured

Interpreted in the GPD framework

rightarrow exclusive π^+ :

✓ σ_{tot} extracted: ⇒ might constrain $\tilde{H} \& \tilde{E}$ ✓ Analysis on Transv.Target SSA ✓ $\sigma_{\pi^+}/\sigma_{\pi^o}$: predicted sensitivity to \tilde{E}

...coming soon

rightarrow exclusive ho^o and ϕ :

 $\checkmark \rho^o$ tool to test different GPD models for quark favour singlet and gluon H & E

Several hard exclusive meson production channels measured

Interpreted in the GPD framework

rightarrow exclusive π^+ :

✓ σ_{tot} extracted: ⇒ might constrain $\tilde{H} \& \tilde{E}$ ✓ Analysis on Transv.Target SSA ✓ $\sigma_{\pi^+}/\sigma_{\pi^o}$: predicted sensitivity to \tilde{E}

...coming soon

rightarrow exclusive ho^o and ϕ :

✓ ρ^o tool to test different GPD models for quark favour singlet and gluon *H* & *E* ⇒ σ_L

 \implies Transverse Target SSA

Several hard exclusive meson production channels measured

Interpreted in the GPD framework

rightarrow exclusive π^+ :

✓ σ_{tot} extracted: ⇒ might constrain $\tilde{H} \& \tilde{E}$ ✓ Analysis on Transv.Target SSA ✓ $\sigma_{\pi^+}/\sigma_{\pi^o}$: predicted sensitivity to \tilde{E}

...coming soon

rightarrow exclusive ho^o and ϕ :

 $\checkmark \rho^o$ tool to test different GPD models for quark favour singlet and gluon H & E

 $\Longrightarrow \sigma_L$

 \implies Transverse Target SSA

 $\checkmark \sigma_L$ of ϕ in agreement with predictions in terms of gluon H & E

✔ first measurement of Legendre moments

✔ first measurement of Legendre moments

 $\checkmark \langle P_1 \rangle$ in agreement with predictions in terms of quark H & E

- ✔ first measurement of Legendre moments
- \checkmark $\langle P_1 \rangle$ in agreement with predictions in terms of quark H & E
- \checkmark increasing $\langle P_1 \rangle$ with increasing x:

 \Longrightarrow relative increase with x of non-singlet quark H & E

- ✔ first measurement of Legendre moments
- $\checkmark \langle P_1 \rangle$ in agreement with predictions in terms of quark H & E
- \checkmark increasing $\langle P_1 \rangle$ with increasing x:
 - \Longrightarrow relative increase with x of non-singlet quark H & E

Near future:

Interesting results expected from all data including 2005 running

Exclusive π^+ : Acceptance Correction

- Acceptance correction found to be model dependent
- Comparison with two different models made and included in the systematics

Exclusive π^+ : **Reduced X**_section

\clubsuit Reduced X_section σ_{red} defined as

• agreement with theoretical expectation $1/Q^2$ at fixed x and t