```
                        GPD's in Lattice QCD
    George T. Fleming
    Yale University
[Lattice Hadron Physics Collaboration]
```

- GPD's and generalized form factors (GFF's).
- Summary of LHPC hadron structure program.
- Some preliminary lattice results.

Dru Renner
University of Arizona
Richard Brower, James Osborn
Boston University
Rebecca Irwin, Michael Ramsey-Musolf
California Institute of Technology
Robert Edwards, David Richards Thomas Jefferson National Accelerator Facility
Bojan Bistrovic, Jonathan Bratt, Patrick Dreher, Oliver Jahn, John Negele, Kostas Orginos, Andrew Pochinsky, Dmitry Sigaev

Massachusetts Institute of Technology
Matthias Burkardt, Michael Engelhardt
New Mexico State University
George Fleming
Yale University

Constantia Alexandrou, Antonios Tsapalis
University of Cyprus
Wolfram Schroers
DESY, Zeuthen

Philippe de Forcrand
ETH-Zürich and CERN
Philipp Hägler
Vrije Universiteit, Amsterdam

GPD's and Generalized Form Factors (GFF's)

- Experimentalists measure matrix elements of light cone operators

$$
\left\langle P^{\prime} S^{\prime}\right| \mathcal{O}_{\Gamma}^{q}|P S\rangle=\left\langle P^{\prime} S^{\prime}\right| \bar{q}\left(-\frac{x^{-}}{2}\right) \Gamma \mathcal{P} \exp \left[-i g \int_{x^{-} / 2}^{-x^{-} / 2} A^{+}(y) d y\right] q\left(\frac{x}{2}\right)|P S\rangle
$$

- They can be written in terms of generalized parton distributions (GPD's)

$$
\begin{aligned}
& \int \frac{d x^{-}}{2 \pi} e^{i x^{-} \bar{p}^{+} x}\left\langle P^{\prime} S^{\prime}\right| \mathcal{O}_{\Gamma}^{q}|P S\rangle \\
& =\bar{U}\left(P^{\prime}, S^{\prime}\right)\left[H^{q}\left(x, \xi, \Delta^{2}\right) \Gamma+E^{q}\left(x, \xi, \Delta^{2}\right) \frac{i \sigma \cdot \Delta}{2 M}\right] U(P, S)
\end{aligned}
$$

- Eight GPD's in all: $H, E, \widetilde{H}, \widetilde{E}, H_{T}, E_{T}, \widetilde{H}_{T}, \widetilde{E}_{T}$
- Using OPE, light cone operators replaced by tower of local twist two operators

$$
\left.\left\langle P^{\prime} S^{\prime}\right| \mathcal{O}_{\Gamma}^{\mu_{1} \cdots \mu_{n}}|P S\rangle=\left\langle P^{\prime} S^{\prime}\right| \bar{q}(x) i D^{\left(\mu_{1}\right.} \cdots i D^{\mu_{n-1}} \Gamma^{\mu_{n}}\right) q(x)|P S\rangle
$$

- They can be parameterized by generalized form factors (GFF's), i. e.

$$
\begin{aligned}
& \left\langle P^{\prime} S^{\prime}\right| \mathcal{O}_{q}^{\mu_{1} \mu_{2}}|P S\rangle= \\
& \bar{U}\left(P^{\prime}, S^{\prime}\right)\left[A_{20}^{q}\left(Q^{2}\right) \gamma^{\left(\mu_{1}\right.} \Delta^{\left.\mu_{2}\right)}+B_{20}^{q}\left(Q^{2}\right) \frac{i \sigma^{\left(\mu_{1} \alpha\right.} \Delta^{\alpha}}{2 M} \Delta^{\left.\mu_{2}\right)}+C_{2}^{q}\left(Q^{2}\right) \frac{\Delta^{\left(\mu_{1}\right.} \Delta^{\left.\mu_{2}\right)}}{2 M}\right] U(P, S)
\end{aligned}
$$

- Nine GFF's in all: $A_{n i}, B_{n i}, C_{n}, \widetilde{A}_{n i}, \widetilde{B}_{n i}, A_{T n i}, B_{T n i}, \widetilde{A}_{T n i}, \widetilde{B}_{T n i}$

Equivalence of GPD's and GFF's

- GPD's and GFF's are formally equivalent by Mellin transformation e. g.

$$
\begin{aligned}
\int_{-1}^{1} d x x^{n-1} H^{q}\left(x, \xi, Q^{2}\right) & =\sum_{i=0, \text { even }}^{n-1} A_{n i}^{q}\left(Q^{2}\right)(-2 \xi)^{i}+\delta_{n, \text { even }} C_{n}^{q}\left(Q^{2}\right)(-2 \xi)^{n} \\
\int_{-1}^{1} d x x^{n-1} E^{q}\left(x, \xi, Q^{2}\right) & =\sum_{i=0, \text { even }}^{n-1} B_{n i}^{q}\left(Q^{2}\right)(-2 \xi)^{i}-\delta_{n, \text { even }} C_{n}^{q}\left(Q^{2}\right)(-2 \xi)^{n}
\end{aligned}
$$

- Choice of GPD's vs. GFF's depends on physics.

GPD: PDF's and transverse PDF's
GFF: elastic form factors and nucleon spin

- In Euclidean lattice QCD, only GFF's can be computed directly.
- Many GFF's are familiar experimental quantities:

$$
\begin{aligned}
& -A_{10}^{q}\left(Q^{2}\right)=F_{1}^{q}\left(Q^{2}\right), \quad B_{10}^{q}\left(Q^{2}\right)=F_{2}^{2}\left(Q^{2}\right) \\
& -\widetilde{A}_{10}^{q}\left(Q^{2}\right)=G_{A}^{q}\left(Q^{2}\right), \quad \widetilde{B}_{10}^{q}\left(Q^{2}\right)=G_{P}^{q}\left(Q^{2}\right), \\
& -J^{q}=\frac{1}{2}\left(A_{20}^{q}(0)+B_{20}^{q}(0)\right), \quad \frac{1}{2} \Delta \Sigma^{q}=\widetilde{A}_{10}^{q}(0) \\
& -L^{q}=J^{q}-\frac{1}{2} \Delta \Sigma^{q} \\
& -\left\langle x^{n-1}\right\rangle_{q}=A_{n 0}^{q}(0), \quad\left\langle x^{n-1}\right\rangle_{\Delta q}=\widetilde{A}_{n 0}^{q}(0),\left\langle x^{n-1}\right\rangle_{\delta q}=A_{T n 0}^{q}(0)
\end{aligned}
$$

- Long term program to compute all $n \leq 4$ GFF's in dynamical lattice QCD.
- Current pion masses $m_{\pi} \approx 350-750 \mathrm{MeV}$ and lattice spacing $a \approx \frac{1}{8} \mathrm{fm}$.
- Status of the calculation

Operators	Matrix elements	Operator renorm.	GFF extraction	Analysis
$\bar{q} \Gamma_{\mu} q$	Done!	Done!	Almost done	Starting
$\bar{q} \Gamma_{(\mu} D_{\nu)} q$	Done!	Done!	Almost done	Starting
$\bar{q} \Gamma_{(\mu} D_{\nu} D_{\rho)} q$	Done!	Done!	Almost done	Starting
$\bar{q} \Gamma_{(\mu} D_{\nu} D_{\rho} D_{\sigma)} q$	Not yet	Done!	Not yet	Not yet

- Only isovector flavor combinations for GFF's in this round.
- Finite perturbative renormalization needed to quote results in $\overline{\mathrm{MS}}$ scheme.

$$
\left\langle P^{\prime} S^{\prime}\right| \mathcal{O}_{\Gamma}^{\mu_{1} \cdots \mu_{n}}|P S\rangle_{\overline{\mathrm{MS}}}=Z\left\langle P^{\prime} S^{\prime}\right| \mathcal{O}_{\Gamma}^{\mu_{1} \cdots \mu_{n}}|P S\rangle_{\mathrm{latt}}
$$

- Lighter pion masses $m_{\pi} \approx 250-350 \mathrm{MeV}$ finished by next year.

Tree level: $Z=1$, One loop HYP corrections: $<10 \%$.

operator	$H(4)$	NOS	HYP	APE
$\bar{q}\left[\gamma_{5}\right] q$	$1_{1}^{ \pm}$	0.68	0.971	1.07
$\bar{q}\left[\gamma_{5}\right] \gamma_{\mu} q$	4_{4}^{\mp}	0.765	0.964	0.99
$\bar{q}\left[\gamma_{5}\right] \sigma_{\alpha_{\nu}} q$	6_{1}^{\mp}	0.821	0.987	0.989
$\bar{q}\left[\gamma_{5}\right] \gamma_{\{\mu} D_{v\}} q$	$6_{3}^{ \pm}$	0.986	0.968	0.929
$\bar{q}\left[\gamma_{5}\right] \gamma_{\{\mu} D_{v\}} q$	$3_{1}^{ \pm}$	0.972	0.962	0.925
$\bar{q}\left[\gamma_{5}\right] \gamma_{\{\mu} D_{v} D_{\alpha\}} q$	8_{1}^{\mp}	1.206	0.982	0.898
$\bar{q}\left[\gamma_{5}\right] \gamma_{\{\mu} D_{v} D_{\alpha\}} q$	mixing	8.78×10^{-3}	2.88×10^{-3}	1.26×10^{-3}
$\bar{q}\left[\gamma_{5}\right] \gamma_{\{\mu} D_{v} D_{\alpha\}} q$	4_{2}^{\mp}	1.191	0.98	0.898
$\bar{q}\left[\gamma_{5}\right] \gamma_{\{\mu} D_{v} D_{\alpha} D_{\beta\}} q$	$2_{1}^{ \pm}$	1.375	0.989	0.876
$\bar{q}\left[\gamma_{5}\right] \sigma_{\mu\{v} D_{\alpha\}} q$	$8_{1}^{ \pm}$	1.018	0.991	0.945
$\bar{q}\left[\gamma_{5}\right] \gamma_{[\mu} D_{v]} q$	6_{1}^{\mp}	0.967	0.973	0.983
$\bar{q}\left[\gamma_{5}\right]{ }_{[\mu \mu} D_{\{v]} D_{\alpha\}} q$	$8_{1}^{ \pm}$	0.931	0.937	0.947

Table 11.17: Full $\overline{M S}$ to lattice renormalization coefficients for $M=1.7$ and 1-loop expression for g. By chiral symmetry matrix elements are the same (except for parity) with and without γ_{5}, and this is indicated by the $\left[\gamma_{5}\right]$ notation where the upper parity arises in the absence of γ_{5}.
B. Bistrovic, Ph. D. Thesis, MIT, 2005

The Nucleon Electromagnetic Form Factors

- Brodsky-Lepage predicted $F_{1} \sim Q^{-4}$ and $F_{2} \sim Q^{-6}$ as $Q^{2} \rightarrow \infty$.
- Older L / T separation experiments observed predicted behavior.
- New polarization transfer experiments do not see expected scaling.
- One Photon Exchange approximation may not be justified.
- Softer scaling also possible (hep-ph/0212351)

$$
\frac{Q^{2}}{\log ^{2}\left(Q^{2} / \Lambda^{2}\right)} \frac{F_{2}\left(Q^{2}\right)}{F_{1}\left(Q^{2}\right)} \sim \mathrm{const}
$$

PRELIMINARY

- Only $I=1$ form factors computed so far to avoid disconnected diagrams. $\quad F_{1}^{I=1}=$ $F_{1 p}-F_{1 n}$ but $F_{1 n}, F_{2 n}$ not known accurately for $Q^{2} \gtrsim 1 \mathrm{GeV}^{2}$.
- Our normalization is $F_{2}\left(Q^{2}\right) \rightarrow \kappa$ as $Q^{2} \rightarrow 0$.

Nucleon F_{2} / F_{1} on the Lattice (II)

PRELIMINARY

- $F_{2}^{I=1} / F_{1}^{I=1} \rightarrow \kappa_{p}-\kappa_{n}$ as $Q^{2} \rightarrow 0$.
- PDG: $\kappa_{p}=1.792847351(28)$
- PDG: $\kappa_{n}=-1.91304273(45)$
- So, comparison of $I=1$ with $p-$ n could be OK with proper chiral extrapolation.

Nucleon axial charge g_{A} in a finite volume

- g_{A} is strongly suppressed by finite volume when $m_{\pi} L<4$.
- Graph from hep-lat/0409161 (QCDSF). $m_{\pi}=717 \mathrm{MeV}$, curve is LO χ PT.

NLO χ PT (with Δ) extrapolation of g_{A}

- Fitting formula proposed by Hemmert et al. hep-lat/0303002.
- Two free parameters: $g_{N N}^{A}$ and $g_{\Delta \Delta}^{A}$.
- Other parameters fixed by phenomenology: $f_{\pi}, g_{N \Delta}^{A}, m_{\Delta}-m_{N}, B_{9}-g_{A} B_{20}$.

Transverse quark distributions

$$
\begin{aligned}
A_{n 0}^{q}\left(-\Delta_{\perp}^{2}\right)= & \int d^{2} b_{\perp} e^{i \Delta_{\perp} \cdot \mathbf{b}_{\perp}} \int_{-1}^{1} x^{n-1} q\left(x, \mathbf{b}_{\perp}\right) \\
& \left\langle b_{\perp}^{2}\right\rangle_{(n)}^{q}=-4 \frac{A_{n 0}^{q \prime}(0)}{A_{n 0}^{q}(0)} \\
& \lim _{x \rightarrow 1} q\left(x, \mathbf{b}_{\perp}\right) \propto \delta\left(b_{\perp}^{2}\right)
\end{aligned}
$$

M. Burkardt hep-ph/0207047

- Higher moments $A_{n 0}$ weight $x \sim 1$.
- Slope of $A_{n 0}^{q}$ decreases as n increases.
- Slope of $A_{10}^{u-d}(0)=-0.93(4)(\mathrm{GeV})^{2}$.
- Slope of $A_{30}^{u-d}(0)=-0.13(3)(\mathrm{GeV})^{2}$.
- Will this continue at light pion masses?

D. Renner (LHPC/SESAM)

- Large scale computation of isovector matrix elements $(n \leq 3)$ is done. Data analysis is proceeding rapidly. Expect published results soon.
- Isoscalar and strange matrix elements are $\mathcal{O}(10)-\mathcal{O}(100)$ times harder to compute due to statistical noise. We'll make our first serious attempt this year.
- Perturbative renormalization complete. Bojan Bistrovic (MIT)
- Reaching higher Q^{2} is high priority for nucleon form factors.

