Measurements of chiral-odd fragmentation functions at Belle

DIS2005 SIR2005 April. 27 – May 1st, Madison, WI May 17-20, Jlab

D. Gabbert (University of Illinois and RBRC) M. Grosse Perdekamp (University of Illinois and RBRC) K. Hasuko (RIKEN/RBRC) S. Lange (Frankfurt University) <u>A. Ogawa (BNL/RBRC)</u> R. Seidl (University of Illinois and RBRC)

Collaboration

Outline

- \cdot Motivation
 - _ Global transversity analysis
 - _ Feasibility \rightarrow LEP analysis
 - [hep-ph/9901216]
- The BELLE detector
- · Collins analysis
 - _ Angular definitions and cross sections
 - Double Ratios to eliminate radiative/momentum correlation effects
 - _ An experimentalist's interpretation
- Summary

2

Motivations for the measurement

KEKB: L>1.5x10³⁴cm⁻²s⁻¹ !!

- KEKB
 - Asymmetric collider = 8GeV e^- + 3.5GeV e^+
 - "On resonance" : $\sqrt{s} = 10.58$ GeV
 - "Off-resonance": $\sqrt{s} = 10.52 \text{ GeV}$
 - Integrated Luminosity: >400 fb⁻¹
 >30fb⁻¹ => off-resonance

 $e^+e^- \rightarrow Y(4S) \rightarrow B\overline{B}$ (plus light quarks) $e^+e^- \rightarrow q\overline{q}$ (u,c, and some d,s,b)

Good tracking and particle identification!

5

Belle is well suited for FF measurements:

- Good detector performance (acceptance, momentum resolution, pid)
- Jet production from light quarks

 → off-resonance (60 MeV below resonance) ~10% of all data
 → on-resonance (on Y(4S)) ~ 90% of data, removing bs are relatively easy

 \rightarrow Current preliminary results are from off resonance data

Event Structure at Belle

Collins fragmentation: Angles and Cross section $cos(2\phi_0)$ method

Independent of thrust-axis

•Convolution integral *I* over transverse momenta involved

2-hadron inclusive transverse momentum dependent cross section:

$$\frac{d\acute{o}(e^+e^- \rightarrow h_1h_2X)}{d\Omega dz_1 dz_2 d^2 q_T} = \cdots B(y) cos(2\varphi_0) I \left[\left(2\hat{h} \cdot k_T \hat{h} \cdot p_T - k_T \cdot p_T \right) \frac{H_1^+ \overline{H}_1^+}{M_1 M_2} \right]$$

$$B(y) = y(1-y)^{cm} \frac{1}{4} sin^2 \Theta$$

Net anti-alignment of transverse quark spins

<u>SIR05</u> 2005 May 18

BELLE

Applied cuts, binning

- Off-resonance data (in the future also resonance)
- Track selection: •
 - pT > 0.1GeV
 - vertex cut: dr<2cm, ldzl<4cm
- Acceptance cut •
 - $-0.6 < \cos \theta_i < 0.9$
- Event selection: •
 - Ntrack \geq 3
 - Thrust > 0.8
 - $-Z_1, Z_2 > 0.2$
 - _ E(visible)>7GeV

Hemisphere cut $(P_{h2} \cdot \hat{n})\hat{n} \cdot (P_{h1} \cdot \hat{n})\hat{n} < 0$

- Opening angule cuts:
 - $\cos(2\phi_0)$ method: $\psi > 120^\circ$
 - $-\cos(\phi_1+\phi_2)$ method: $\psi_1 < 60^\circ, \psi_2 > 120^\circ$

clearly visible No change in cosine moments when including higher harmonics (even though double ratios will contain them)

- D_1 : spin averaged fragmentation function,
- H₁: Collins fragmentation function

Raw asymmetries vs Q_T

 $\cdot Q_T$ describes transverse momentum of virtual photon in ππ CMS system

·Significant nonzero Asymmetries visible in MC

·Acceptance, radiative and momentum correlation effects similar for like and unlike sign

 φ_1

12

Z vs photon momentum Q_T

Methods to eliminate gluon contributions: Double ratios and subtractions between Unlike-sign pair (Fav*Fav + Unfav*Unfav) and Like-sign pair (Fav*Unfav)

Testing the double ratios with MC

- Asymmetries do cancel out for MC
- Double ratios of $\pi^+\pi^+/\pi^-\pi^$ compatible to zero
- Mixed events also show zero result
- Asymmetry reconstruction works well for τ MC (weak decays)
- Single hemisphere analysis yields zero
- \rightarrow Double ratios are safe to use

	$^{\pi\pi}$ uds	$^{\pi\pi}$ charm	$^{\pi\pi}$ mixed	kk mixed
constant	0.26%±0.19%	-0.45%±0.33%	0.06%±0.09%	0.01%±0.16%
reduced χ^2	1.17	1.35	1.14	1.2

<u>SIR05</u> 2005 May 18

Results for π -pairs for 30fb⁻¹

- Significant nonzero asymmetries
- **Rising behaviour** . VS.Z
- $\cos(\phi_1 + \phi_2)$ double • ratios only marginally larger
- First direct . measurement of the Collins function

16

Systematics: charm contribution?

- Weak (parity violating) decays could also create asymmetries (seen in $\tau \overline{\tau} \rightarrow \pi \pi v \overline{v}$, overall τ dilution 5%)
- Especially low dilution in combined z-bins with large pion asymmetry
- Double ratios from charm MC compatible to zero
- → Charm decays cannot explain large double ratios seen in the data
- ➔ Systematic errors from charm are preliminary

An experimentalist' s toy interpretation: fitting parameterizations of the Collins function(s)

Summary and outlook

Summary:

Outlook:

Finalize analysis Double ratios: • On resonance $\rightarrow 10$ x statistics double ratios from data Include π^0 into analysis: most systematic errors cancel → Better distinction between checked with subtraction method favored and disfavored Analysis procedure passes Collins function zero tests Include VMs into analysis: Main systematic uncertainties • ➔ Possibility to test string fragmentation models used to describe Collins effect understood Significant non-zero Collins Expansion of analysis to Interference fragmentation function is straightforward asymmetries observed And more (Kaon Collins FF, Tau, unpol FF @ high z, …) → Naive LO analysis shows significant Collins effect

What is the transverse momentum Q_{T} of the virtual photon?

Different charge combinations →additional information

 Unlike sign pairs contain either only favored or only unfavored fragmentation functions on quark and antiquark side:

 $D_1^{fav}(z_1)\overline{D_1^{fav}(z_2)} + D_1^{unfav}(z_1)\overline{D_1^{unfav}(z_2)}$

 Like sign pairs contain one favored and one unfavored fragmentation function each:

 $D_1^{fav}(z_1)\overline{D_1^{unfav}(z_2)} + D_1^{unfav}(z_1)\overline{D_1^{fav}(z_2)}$

Favored = $\mathbf{u} \rightarrow \pi^+, \mathbf{d} \rightarrow \pi^-, \mathbf{cc.}$ Unfavored = $\mathbf{d} \rightarrow \pi^+, \mathbf{u} \rightarrow \pi^+, \mathbf{cc.}$ $\frac{N(\phi)}{N_0} = \frac{aD_1\overline{D_1} + cos(2\phi)\left(bH_1\overline{H_1} + cD_1\overline{D_1}\right)}{aD_1\overline{D_1}}$ $N(\phi) = \frac{(bH_1\overline{H_1} - bD_1\overline{D_1})}{(bH_1\overline{H_1} - bD_1\overline{D_1})}$

$$\frac{N(\phi)}{N_0} = 1 + \cos(2\phi) \left(\frac{bH_1\overline{H_1}}{aD_1\overline{D_1}} + c/a\right)$$

Raw asymmetries vs transverse photon momentum Q_T

22

 Ψ_1