Understanding SSA in SIDIS on basis of chiral quark soliton model and large N_c limit

Peter Schweitzer

Institute for Theoretical Physics II, Ruhr-University Bochum, Germany

work in collaboration with A. V. Efremov, K. Goeke, S. Menzel, A. Metz

Overview:

- Solid basis: Chiral quark soliton model & instanton vacuum
- Early (and premature) success: $A_{UL}^{\sin \phi}$ at HERMES & $A_{UL}^{\sin 2\phi}$ at CLAS
- Lessons from HERMES and COMPASS A_{UT} data on Collins and Sivers effect
- If we understood lessons: New predictions & estimates
 - \longrightarrow to be checked in experiments
- Conclusions

typically $\{$ **SSA** in **SIDIS** $\} = \{h_1^a(x), h_L^a(x), \ldots\} \times \{H_1^{\perp}(z), \ldots\}$

 \implies desirable to know at least some ingredients as reliably as possible

Chiral quark soliton model

- nucleon = N_c quarks bound in static pion mean field as $N_c \to \infty$
- derived from instanton vacuum (\rightarrow chiral symmetry breaking)
- wide range of applications: mass splittings, form factors, ..., Θ^+ (?)
- \bullet most recent: chiral extrapolation of lattice data, hep-lat/0505010
- twist-2 q and \bar{q} distribution functions, GPDs, D-term at $\mu \approx 0.6\,{\rm GeV}$ some highlights
 - \rightarrow Gottfried "sum rule" $\int \mathrm{d}x\,(f_1^{\bar{u}}-f_1^{\bar{d}})(x)\neq 0$
 - \rightarrow predicts even larger flavour asymmetry in helicity sea $(g_1^{\bar{u}} g_1^{\bar{d}})(x) > |(f_1^{\bar{u}} f_1^{\bar{d}})(x)|$
- phenomenologically <u>successful</u> within accuracy of (10-30)% no free parameters
- theoretically <u>consistent</u>: PDFs \rightarrow inequalities and sum rules, GPDs \rightarrow polynomiality
- Good model, but not perfect. No gluons. Sivers function = 0 suppressed Pobylitsa hep-ph/0212027.

Predictions for $h_1^a(x)$ and $h_L^a(x)$ LO-evolved to $2.5\,{
m GeV}^2$

• twist-2 $h_1^a(x)$ directly computed in model PS, Urbano, Pobylitsa, Polyakov, Weiss, Goeke PRD64 (2001) 034013 • twist-3 $h_L^a(x) = 2x \int_x^1 dy \frac{h_1^a(y)}{y^2} + \tilde{h}_L^a(x)$ with $|\tilde{h}_L(x)| \ll |h_1(x)|$ from instanton vacuum Dressler and Polyakov, PRD61 (2000) 097501

• reliable within accuracy of the model $\sim (10-30)\%$

- simplified description of transverse momenta $f(x, k_T^2) = f(x) \mathcal{G}(k_T^2), k_T$ -weighting (!)
- $\frac{\langle H_1^{\perp \text{fav}} \rangle}{\langle D_1^{\text{fav}} \rangle} = (12 14)\%$ assuming $\langle H_1^{\perp \text{unf}} \rangle \approx 0$ [DELPHI Efremov *et al.*, NPB **74** (1999) 49c \rightarrow BELLE!]
- reasonable description without free adjustable parameters

• But twist-3 "T-odd" distributions/fragmentation functions Afanasev and Carlson, hep-ph/0308163; Yuan, PLB 589 (2004) 28; Gamberg et al. PLB 2004; Metz and Schlegel, EPJA 22 (2004) 489; Bacchetta, Mulders and Pijlman, PLB 595 (2004) 309; Goeke, Metz and Schlegel, hep-ph/0504130

• More promising to access e(x): interference functions Bacchetta and Radici, PRD 69 (2004) 074026.

Satisfactory description of $A_{UL}^{\sin\phi}(x)$ without Sivers and other effects, how possible?

• Sivers function suppressed in instanton vacuum?

Efremov, Goeke and P.S., PLB **568** (2003) 63; Ostrovsky and Shuryak, PRD71, 014037 (2005); Boer et al., EPJC40, 55 (2005)

• f_{1T}^{\perp} as large as allowed by positivity bounds^{*} could be hidden in statistical error bars!

Bacchetta and P.S., NPA **732** (2004) 106, using model calculation for H_1^{\perp} by Bacchetta et al., PRD **65** (2002) 094021.**

* Bacchetta *et al.*, PRL **85** (2000) 712.

 ** Amrath, Bacchetta and Metz, hep-ph/0504124.

Certain success! But error bars large. Strong & unambiguous test $\implies A_{UT}$

Remark: Caution! Preliminary A_{UT}^{Col} SMC data [Bravar, NPB 79 (1999) 520c]: Opposite sign!

Transverse Collins SSA: $A_{UT}^{\sin(\phi+\phi_S)} \propto h_1(x) H_1^{\perp}$ twist-2 and "clean" & "simple"

• HERMES data [PRL94, 012002, 2005] \leftrightarrow our approach [Efremov, Goeke, P.S., EPJC32, 377, 2004].

Looks much different \longrightarrow Exciting! What went wrong? <u>First lesson:</u>

• If we

believe in models for $h_1^a(x)$, stick to simplified description of p_T , continue neglecting soft factors \implies the only suspicion is: $H_1^{\perp \text{unf}} \not\approx 0$.

Collins SSA $A_{UT}^{\sin(\phi+\phi_S)}$

• define analyzing power $B^a = \frac{\langle k_{\perp \pi} \rangle}{m_{\pi} \sqrt{1 + \frac{\langle p_{\perp \pi}^2 \rangle}{\langle k_{\perp \pi}^2 \rangle}}} \cdot \langle H_1^{\perp a} \rangle$

for Gaussian distribution of $p_{\perp N}$ in target and $k_{\perp \pi}$ fragmentation process $\rightarrow P_{\pi \perp}$ -weighting!

- rather interesting and unexpected properties of Collins fragmentation function (string model?)
- not inconsistent with preliminary HERMES data for π^0

Such behaviour of Collins function consistent with $A_{UL}^{\sin 2\phi} \propto h_{1L}^{\perp a} H_1^{\perp a}$?

• π^- much more sensistive to $H_1^{\perp unf} \longrightarrow \text{consistent}?$

Remark: "Lorentz invariance relation" $h_{1L}^{\perp(1)}(x) = -x^2 \int_x^1 dy \ \frac{h_1(y)}{y^2}$ in general incorrect

Goeke, Metz, Pobylitsa, Polyakov PLB 567 (2003) 27

spoiled by "gluonic effects" ~ suppressed in instanton vacuum \rightarrow deserves further investigation • seems consistent with CLAS $A_{UL}^{\sin 2\phi} \neq 0$. Since measured in different z-range, need $H_1^{\perp \text{fav,unf}}(z) \dots$

${ m Second\ lesson:} \quad { m Sivers\ SSA}\ A_{UT}^{\sin(\phi-\phi_S)rac{P_h\perp}{M_N}} \propto f_{1T}^{\perp(1)a}(x) D_1^a(z)$

- unambiguous evidence for T-odd distribution, consider (preliminary) data weighted with $P_{h\perp}$
- z-dependence dictated by $D_1^a(z)$ e.g. Kretzer, Leader, Christova, EPJC 22 (2001) 269
- use large- N_c limit $f_{1T}^{\perp u} = -f_{1T}^{\perp d}$ modulo $1/N_c$ corrections Pobylitsa hep-ph/0301236 (Drago in model)
- fit: $x f_{1T}^{\perp(1)u} = -0.4x(1-x)^5$ or $-0.1x^{0.3}(1-x)^5$ neglect s, \bar{q}

• compatible with positivity, respects $\sum_{a} \int dx f_{1T}^{\perp(1)a}(x) = 0$, supports picture by M.Burkardt

- small & not inconsistent with idea of instanton suppression
- similar result without large- N_c Anselmino, Boglione, D'Alesio, Kotzinian, Murgia, Prokudin hep-ph/0501196

- Of course, expect $1/N_c$ corrections \rightarrow deuteron $f_{1T}^{\perp u/D} \approx f_{1T}^{\perp u/p} + f_{1T}^{\perp u/n} \approx f_{1T}^{\perp u} + f_{1T}^{\perp d}$
- COMPASS $A_{UT,D}^{\sin(\phi-\phi_s)} \sim 1/N_c \sim 0$ within error bars HERMES $A_{UT,p}^{\sin(\phi-\phi_s)} \sim N_c^0$ some effect, although comparable statistics
- Conclusion: HERMES & COMPASS compatible, $f_{1T}^{\perp a}|_{\text{SIDIS}}$ compatible with large N_c

Conclusions

- first data $A_{UL}^{\sin\phi}$ most complicated \rightarrow first understanding needs revision
- new data Collins $A_{UT}^{\sin(\phi+\phi_S)}$
 - \rightarrow exciting & unexpected properties of Collins fragmentation function
 - \rightarrow need more information from CLAS, HALL A on $A_{UT}^{\sin(\phi+\phi_S)}$ and $A_{UL}^{\sin 2\phi}$
- new data Sivers $A_{UT}^{\sin(\phi-\phi_S)}$
 - \rightarrow first insight into $f_{1T\,\text{SIDIS}}^{\perp(1)a}$ compatible with large N_c
 - \rightarrow test change of sign in Drell-Yan at PAX, COMPASS
- predictions & estimates are made
 - \rightarrow wait for next data
 - \rightarrow and (most likely) revise the revised understanding and learn something new!!!

THANK YOU!