Moments and Form Factors

Results 000000000 Conclusions and Outlook

Generalised Parton Distributions and Transversity from Lattice QCD

M. Göckeler, P. Hägler, R. Horsley, D. Pleiter, P. Rakow, A. Schäfer, G. Schierholz, J. Zanotti

QCDSF/UKQCD Collaboration

*Presented by James Zanotti NIC/DESY Zeuthen

May 19, 2005

Moments and Form Factors

Results 000000000 Conclusions and Outlook

Motivation

- Unique opportunity for lattice calculations to compliment experiment
- Assist in the full mapping of the parameter space spanned by GPDs

Moments and Form Factors

Results 000000000 Conclusions and Outlook o

Motivation

- Unique opportunity for lattice calculations to compliment experiment
- Assist in the full mapping of the parameter space spanned by GPDs

 $\Delta = p' - p, \ t = \Delta^2, \ \overline{p} = \frac{p' + p}{2}, \ \xi = -n \cdot \Delta, \ n \cdot \overline{p} = 1$

3

(日)

Results 000000000 Conclusions and Outlook

Generalised Parton Distributions

• GPDs are defined through nucleon matrix elements of the light cone operators

$$\int \frac{d\lambda}{4\pi} e^{i\lambda x} \langle P' | \overline{\psi}(-\frac{\lambda}{2}n) \gamma^{\mu} \psi(\frac{\lambda}{2}n) | P \rangle =$$

$$\overline{U}(P') (\gamma^{\mu} H(x,\xi,t) + \frac{i\sigma^{\mu\nu} \Delta_{\nu}}{2m} E(x,\xi,t)) U(P)$$

$$\int \frac{d\lambda}{4\pi} e^{i\lambda x} \langle P' | \overline{\psi}(-\frac{\lambda}{2}n) \gamma_{5} \gamma^{\mu} \psi(\frac{\lambda}{2}n) | P \rangle =$$

$$\overline{U}(P') \left(\gamma_{5} \gamma^{\mu} \widetilde{H}(x,\xi,t) + \frac{i\gamma_{5} \Delta^{\mu}}{2m} \widetilde{E}(x,\xi,t) \right) U(P)$$

$$\int \frac{d\lambda}{4\pi} e^{i\lambda x} \langle P' | \overline{\psi}(-\frac{\lambda}{2}n) \sigma^{\mu\nu} \psi(\frac{\lambda}{2}n) | P \rangle =$$

$$\overline{U}(P') \left(i\sigma^{\mu\nu} H_{T}(x,\xi,t) + \frac{\gamma^{[\mu} \Delta^{\nu]}}{2m} E_{T}(x,\xi,t) + \frac{\overline{P}^{[\mu} \Delta^{\nu]}}{m} \widetilde{H}_{T}(x,\xi,t) + \frac{\gamma^{[\mu} \overline{P}^{\nu]}}{m} \widetilde{E}_{T}(x,\xi,t) \right) U(P)$$

æ

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Motivation 00• Moments and Form Factors

Results 000000000 Conclusions and Outlook

Generalised Parton Distributions

- The forward limit $t = \Delta^2 \rightarrow 0$ reproduces the parton distributions, H(x, 0, 0) = q(x), $\tilde{H}(x, 0, 0) = \Delta q(x)$ and $H_T(x, 0, 0) = \delta q(x)$
- $\int dx \rightarrow$ Dirac, Pauli, axial, pseudo-scalar, tensor etc. form factors, $\int dx H(x,\xi,t) = F_1(t)$, $\int dx E = F_2(t)$, $\int dx \widetilde{H} = g_A(t)$, ...
- FT ∫ dΔ_⊥e^{-ib_⊥·Δ_⊥} GPDs H, H̃ and H_T (ξ = 0) are coordinate space probability densities in the impact parameter b_⊥
- $\int dxxE(x,0,0) = B_{20}(0)$, \rightarrow quark orbital angular momentum contribution to the nucleon spin, $L^q = 1/2(\langle x \rangle + B_{20} \Delta q)$, where $\langle x \rangle$ is the quark momentum fraction

・ コット ふぼう ふほう トレート

Moments and Form Factors •0000 Results 000000000 Conclusions and Outlook

Generalised Form Factors

- Construct Mellin moments
- non-forward MEs of tower of local twist-2 operators

$$\mathcal{O}_{q}^{\{\mu_{1}\cdots\mu_{n}\}}=\overline{q}\,\gamma^{\{\mu_{1}}\,\overleftrightarrow{D}^{\mu_{2}}\cdots\overleftrightarrow{D}^{\mu_{n}\}}\,q$$

 \rightarrow Generalised Form Factors

$$\langle p', s' | \mathcal{O}^{\{\mu_1 \cdots \mu_n\}}(\Delta) | p, s \rangle = \overline{u}(p', s') \gamma^{\{\mu_1} u(p, s) \sum_{i=0}^{\frac{n-1}{2}} A_{qn,2i}(t) \Delta^{\mu_2} \cdots \Delta^{\mu_{2i+1}} \overline{p}^{\mu_{2i+2}} \cdots \overline{p}^{\mu_n\}}$$

$$+ \bar{u}(p', s') \frac{i\sigma^{\{\mu_1\nu}\Delta_{\nu}}{2m} u(p, s) \sum_{i=0}^{2} B_{qn,2i}(t) \Delta^{\mu_2} \cdots \Delta^{\mu_{2i+1}} \overline{p}^{\mu_{2i+2}} \cdots \overline{p}^{\mu_n\}}$$

$$+ C_{qn}(t) \frac{1}{m} \overline{u}(p', s') u(p, s) \Delta^{\mu_1} \cdots \Delta^{\mu_n}|_{n \text{ even}}$$

Similar for

 $\tilde{A}_{qn,2i}(t), \ \tilde{B}_{qn,2i}(t), \ A_{qn,2i}^{T}(t), \ B_{qn,2i}^{T}(t), \ \tilde{A}_{qn,2i}^{T}(t), \ \tilde{B}_{qn,2i}^{T}(t)$

Moments and Form Factors

Results 000000000 Conclusions and Outlook

Moments of GPDs

• GPDs are defined through their moments.

$$\int_{-1}^{1} dx \, x^{n-1} \, H_q(x,\xi,t) = H_{qn}(\xi,t)$$
$$\int_{-1}^{1} dx \, x^{n-1} \, E_q(x,\xi,t) = E_{qn}(\xi,t)$$

where $\xi = -n \cdot \Delta$, $n \cdot \bar{p} = 1$, $\bar{p} = \frac{1}{2}(p' + p)$ and

$$\begin{split} H_{qn}(\xi,t) &= \sum_{i=0}^{\frac{n-1}{2}} A_{qn,2i}(t) (-2\xi)^{2i} + C_{qn}(t) (-2\xi)^n |_{n \text{ even}} \\ E_{qn}(\xi,t) &= \sum_{i=0}^{\frac{n-1}{2}} B_{qn,2i}(t) (-2\xi)^{2i} - C_{qn}(t) (-2\xi)^n |_{n \text{ even}} \end{split}$$

3

・ロト ・四ト ・ヨト ・ヨト

Moments and Form Factors

Results 000000000 Conclusions and Outlook

Moments of GPDs II

• zeroth moment, n = 1

$$\int_{-1}^{1} dx H_q(x,\xi,t) = F_1(t)$$

$$\int_{-1}^{1} dx E_q(x,\xi,t) = F_2(t)$$

• first moment, n = 2

$$\int_{-1}^{1} dx \times H_q(x,\xi,t) = A_{2,0}^q(t) + \xi^2 C_2^q(t)$$
$$\int_{-1}^{1} dx \times E_q(x,\xi,t) = B_{2,0}^q(t) - \xi^2 C_2^q(t)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □

Moments and Form Factors

Results 000000000 Conclusions and Outlook

Impact Parameter GPDs

• Probabilistic interpretation of $H(x, \xi, t)$ (and $\widetilde{H}(x, \xi, t)$, $H_T(x, \xi, t)$) at $\xi = 0$ due to M.Burkardt

$$q(x, \vec{b}_{\perp}) = \frac{1}{(2\pi)^2} \int d^2 \Delta_{\perp} e^{-i\vec{b}_{\perp}\cdot\Delta_{\perp}} H(x, 0, -\Delta_{\perp}^2)$$

• Also shows $H(x,0,t=-\Delta_{\perp}^2)
ightarrow t$ -independent for x
ightarrow 1

 $\Rightarrow \lim_{x \to 1} q(x, \vec{b}_{\perp}) \propto \delta^2(\vec{b}_{\perp})$

3

Moments and Form Factors

Results 000000000 Conclusions and Outlook

Ji's Angular Momentum Sum Rule

• Forward limit, $\mathbf{t} = \boldsymbol{\xi} = \mathbf{0}$

$$\mathcal{A}^{q}_{2,0}(0) = \langle x_{q} \rangle \equiv \int_{-1}^{1} dx \, x \left(q_{\uparrow}(x) + q_{\downarrow}(x) \right)$$

$$\frac{1}{2}(A_{2,0}^q(0)+B_{2,0}^q(0))=J_q$$

- $J_q = L_q + S_q$ angular momentum of quark, q
- L_q orbital angular momentum of q
- S_q spin of q

$$S_q = \frac{1}{2} \Delta q \equiv \frac{1}{2} \int_{-1}^{1} dx \left(q_{\uparrow}(x) - q_{\downarrow}(x) \right)$$
$$J = \sum_q J_q$$

3

Moments and Form Factors

Results •00000000 Conclusions and Outlook

Generalised Form Factors, $(m_{\pi} \approx 950 \text{MeV})$

Moments and Form Factors

Results 00000000 Conclusions and Outlook

Impact Parameter Space, $(m_{\pi} \approx 950 \text{MeV})$

æ

Moments and Form Factors

Results 00000000 Conclusions and Outlook

Impact Parameter Space

- Flattening of the GFFs \implies quark distribution $\rightarrow \delta^2(\vec{b}_{\perp})$ as $x \rightarrow 1$
- Form factors well described by a dipole
- Extrapolate dipole masses to chiral limit

$$A_{n0}(t) = \frac{A_{n0}(0)}{(1 - t/M_n^2)^2} \rightarrow \bar{A}_{n0}(t) = \frac{1}{(1 - t/(M_n^0 + \alpha_n m_\pi^2)^2)^2}$$

3

(日)

Moments and Form Factors

Results 000000000

Conclusions and Outlook

Described By A Dipole

æ

 m_{π}^{2} [GeV²]

04

0.2 0.4

-2

・ロン ・聞 と ・ 聞 と ・ 聞 と

1.2

Moments and Form Factors

Results 0000000000 Conclusions and Outlook

Generalised Transversity, $(\overline{MS} 4 \text{ GeV}^2)$

Moments and Form Factors

Results 000000000 Conclusions and Outlook 0

Regge Trajectory?

Regge: $\sqrt{M_n^2} = \alpha + n/\alpha'$

 $M_n^2 = \alpha + n/\alpha'$

・ロト ・聞ト ・ヨト ・ヨト

$$\int_{-1}^{1} \mathrm{d}x \, x^{n-1} \, H_q(x,0,t) = \frac{\langle x_q^{n-1} \rangle}{(1-t/M_n^2)^2},$$

Moments and Form Factors

Results 000000000 Conclusions and Outlook

Conclusions and Outlook

- Lattice provides a useful tool for investigating (moments of) GPDs
 - "Flattening" of GFFs $A_{n0}(t)$ for increasing n
 - $\lim_{x \to 1} q(x, \vec{b}_{\perp}) \propto \delta^2(\vec{b}_{\perp})$
- Complete Current Analysis
 - Increase statistics for 2^{nd} moment
 - Renormalisation
 - Finite volume effects
 - Chiral extrapolation
 - Partially Quenched
- Quark contribution to nucleon spin and angular momentum
- Compute $H_q(x,0,t)$ and $\tilde{H}_q(x,0,t)$ via inverse Mellin Transform

