GPDs and **SSAs**

Matthias Burkardt

burkardt@nmsu.edu

New Mexico State University Las Cruces, NM, 88003, U.S.A.

Outline

- Brief overview on generalized parton distributions (GPDs)
- Probabilistic interpretation of GPDs as Fourier transforms of impact parameter dependent PDFs

 - $\tilde{H}(x,0,-\mathbf{\Delta}_{\perp}^2) \longrightarrow \Delta q(x,\mathbf{b}_{\perp})$
 - $E(x,0,-\mathbf{\Delta}_{\perp}^2)\longrightarrow \perp$ distortion of PDFs when the target is transversely polarized
 - Sivers effect for single spin asymmetries
 - $extstyle 2 \tilde{H}_T + E_T \longrightarrow \perp ext{distortion of } \perp ext{polarized PDFs in unpolarized target}$

 - \hookrightarrow Boer-Mulders function $h_1^{\perp}(x, \mathbf{k}_{\perp})$
- Summary

Generalized Parton Distributions (GPDs)

■ GPDs: decomposition of form factors at a given value of t, w.r.t. the average momentum fraction $x = \frac{1}{2} (x_i + x_f)$ of the active quark

$$\int dx H_q(x,\xi,t) = F_1^q(t) \qquad \int dx \tilde{H}_q(x,\xi,t) = G_A^q(t)$$

$$\int dx E_q(x,\xi,t) = F_2^q(t) \qquad \int dx \tilde{E}_q(x,\xi,t) = G_P^q(t),$$

- x_i and x_f are the momentum fractions of the quark before and after the momentum transfer
- $2\xi = x_f x_i$
- formal definition:

$$\int \frac{dx^{-}}{2\pi} e^{ix^{-}\bar{p}^{+}x} \left\langle p' \left| \bar{q} \left(-\frac{x^{-}}{2} \right) \gamma^{+} q \left(\frac{x^{-}}{2} \right) \right| p \right\rangle = H(x, \xi, \Delta^{2}) \bar{u}(p') \gamma^{+} u(p)$$

$$+ E(x, \xi, \Delta^{2}) \bar{u}(p') \frac{i\sigma^{+\nu} \Delta_{\nu}}{2M} u(p)$$

Generalized Parton Distributions (GPDs)

- ullet measurement of the quark momentum fraction x singles out one space direction (the direction of the momentum)
- \hookrightarrow makes a difference whether the momentum transfer is parallel, or \bot to this momentum
- GPDs must depend on an additional variable which characterizes the direction of the momentum transfer relative to the momentum of the active quark $\longrightarrow \xi$.
- in the limit of vanishing t and ξ , the nucleon non-helicity-flip GPDs must reduce to the ordinary PDFs:

$$H_q(x, 0, 0) = q(x)$$
 $\tilde{H}_q(x, 0, 0) = \Delta q(x).$

- ullet GPDs are form factor for only those quarks in the nucleon carrying a certain fixed momentum fraction x

Form Factors vs. GPDs

operator	forward matrix elem.	off-forward matrix elem.	position space
$\bar{q}\gamma^+q$	Q	F(t)	$ ho(ec{r})$
$\int \frac{dx^- e^{ixp^+ x^-}}{4\pi} \bar{q}\left(\frac{-x^-}{2}\right) \gamma^+ q\left(\frac{x^-}{2}\right)$	q(x)	$H(x,\xi,t)$?

Form Factors vs. GPDs

operator	forward matrix elem.	off-forward matrix elem.	position space
$\bar{q}\gamma^+q$	Q	F(t)	$ ho(ec{r})$
$\int \frac{dx^- e^{ixp^+ x^-}}{4\pi} \bar{q}\left(\frac{-x^-}{2}\right) \gamma^+ q\left(\frac{x^-}{2}\right)$	q(x)	H(x,0,t)	$q(x,\mathbf{b}_{\perp})$

 $q(x, \mathbf{b}_{\perp}) = \text{impact parameter dependent PDF}$

Impact parameter dependent PDFs

lacksquare define state that is localized in \perp position:

$$|p^+, \mathbf{R}_\perp = \mathbf{0}_\perp, \lambda\rangle \equiv \mathcal{N} \int d^2 \mathbf{p}_\perp |p^+, \mathbf{p}_\perp, \lambda\rangle$$

Note: \perp boosts in IMF form Galilean subgroup \Rightarrow this state has

$$\mathbf{R}_{\perp} \equiv \frac{1}{P^{+}} \int dx^{-} d^{2}\mathbf{x}_{\perp} \, \mathbf{x}_{\perp} T^{++}(x) = \sum_{i} x_{i} \mathbf{r}_{i,\perp} = \mathbf{0}_{\perp}$$

(cf.: working in CM frame in nonrel. physics)

define impact parameter dependent PDF

$$\underline{q(x, \mathbf{b}_{\perp})} \equiv \int \frac{dx^{-}}{4\pi} \langle p^{+}, \mathbf{R}_{\perp} = \mathbf{0}_{\perp} | \, \bar{q}(-\frac{x^{-}}{2}, \mathbf{b}_{\perp}) \gamma^{+} q(\frac{x^{-}}{2}, \mathbf{b}_{\perp}) | p^{+}, \mathbf{R}_{\perp} = \mathbf{0}_{\perp} \rangle e^{ixp^{+}x^{-}}$$

GPDs \longleftrightarrow $q(x, \mathbf{b}_{\perp})$

 nucleon-helicity nonflip GPDs can be related to distribution of partons in \(\perp \) plane

$$q(x, \mathbf{b}_{\perp}) = \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} e^{i\mathbf{\Delta}_{\perp} \cdot \mathbf{b}_{\perp}} H(x, 0, -\mathbf{\Delta}_{\perp}^2),$$

$$\Delta q(x, \mathbf{b}_{\perp}) = \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} e^{i\mathbf{\Delta}_{\perp} \cdot \mathbf{b}_{\perp}} \tilde{H}(x, 0, -\mathbf{\Delta}_{\perp}^2),$$

- **no rel. corrections** to this result! (Galilean subgroup of \bot boosts)
- $m{p}$ $q(x, \mathbf{b}_{\perp})$ has probabilistic interpretation, e.g.

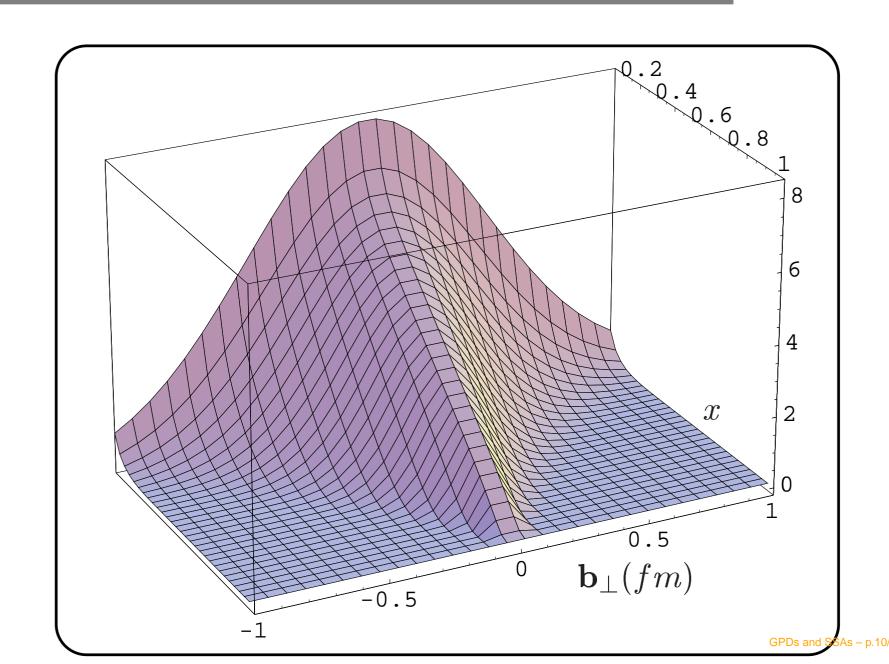
$$q(x, \mathbf{b}_{\perp}) \ge |\Delta q(x, \mathbf{b}_{\perp})| \ge 0$$
 for $x > 0$ $q(x, \mathbf{b}_{\perp}) \le |\Delta q(x, \mathbf{b}_{\perp})| \le 0$ for $x < 0$

- Note that x already measures longitudinal momentum of quarks
- → no simultaneous measurement of long. position of quarks

GPDs \longleftrightarrow $q(x, \mathbf{b}_{\perp})$

- **▶** b_⊥ distribution measured w.r.t. $\mathbf{R}_{\perp}^{CM} \equiv \sum_{i} x_i \mathbf{r}_{i,\perp}$ \hookrightarrow width of the b_⊥ distribution should go to zero as $x \to 1$, since the active quark becomes the \bot center of momentum in that limit! $\hookrightarrow H(x,0,-\mathbf{\Delta}_{\perp}^2)$ must become $\mathbf{\Delta}_{\perp}^2$ -indep. as $x \to 1$. Confirmed by recent lattice studies (QCDSF, LHPC)
- Anticipated shape of $q(x, \mathbf{b}_{\perp})$:
 large x: quarks from localized valence 'core',
 small x: contributions from larger 'meson cloud' \hookrightarrow expect a gradual increase of the t-dependence (\perp size) of H(x, 0, t) as x decreases

$q(x, \mathbf{b}_{\perp})$ in a simple model



Transversely Distorted Distributions and $E(x, 0, -\Delta_{\perp}^2)$

So far: only unpolarized (or long. pol.) nucleon! In general ($\xi = 0$):

$$\int \frac{dx^{-}}{4\pi} e^{ip^{+}x^{-}x} \langle P + \Delta, \uparrow | \bar{q}(0) \gamma^{+} q(x^{-}) | P, \uparrow \rangle = H(x, 0, -\boldsymbol{\Delta}_{\perp}^{2})$$

$$\int \frac{dx^{-}}{4\pi} e^{ip^{+}x^{-}x} \langle P + \Delta, \uparrow | \bar{q}(0) \gamma^{+} q(x^{-}) | P, \downarrow \rangle = -\frac{\Delta_{x} - i\Delta_{y}}{2M} E(x, 0, -\boldsymbol{\Delta}_{\perp}^{2}).$$

Consider nucleon polarized in x direction (in IMF) $|X\rangle \equiv |p^+, \mathbf{R}_{\perp} = \mathbf{0}_{\perp}, \uparrow\rangle + |p^+, \mathbf{R}_{\perp} = \mathbf{0}_{\perp}, \downarrow\rangle.$

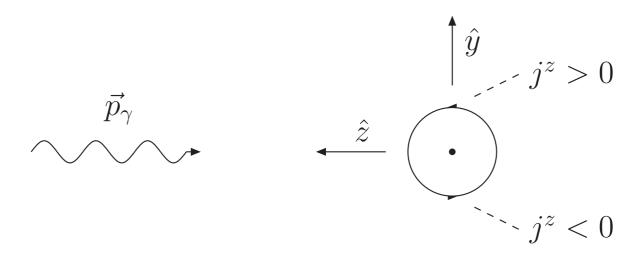
→ unpolarized quark distribution for this state:

$$q(x, \mathbf{b}_{\perp}) = \mathcal{H}(x, \mathbf{b}_{\perp}) - \frac{1}{2M} \frac{\partial}{\partial b_{y}} \int \frac{d^{2} \mathbf{\Delta}_{\perp}}{(2\pi)^{2}} E(x, 0, -\mathbf{\Delta}_{\perp}^{2}) e^{-i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}_{\perp}}$$

Physics: $j^+ = j^0 + j^3$, and left-right asymmetry from j^3 !

Intuitive connection with \vec{L}_q

- Electromagnetic interaction couples to vector current. Due to kinematics of the DIS-reaction (and the choice of coordinates \hat{z} -axis in direction of the momentum transfer) the virtual photons "see" (in the Bj-limit) only the $j^+ = j^0 + j^z$ component of the quark current
- If up-quarks have positive orbital angular momentum in the \hat{x} -direction, then j^z is positive on the $+\hat{y}$ side, and negative on the $-\hat{y}$ side



Intuitive connection with \vec{L}_q

- Electromagnetic interaction couples to vector current. Due to kinematics of the DIS-reaction (and the choice of coordinates \hat{z} -axis in direction of the momentum transfer) the virtual photons "see" (in the Bj-limit) only the $j^+ = j^0 + j^z$ component of the quark current
- If up-quarks have positive orbital angular momentum in the \hat{x} -direction, then j^z is positive on the $+\hat{y}$ side, and negative on the $-\hat{y}$ side
- \rightarrow j^+ is distorted not because there are more quarks on one side than on the other but because the DIS-photons (coupling only to j^+) "see" the quarks on the $+\hat{y}$ side better than on the $-\hat{y}$ side (for $L_x > 0$).

Transversely Distorted Distributions and $E(x, 0, -\Delta_{\perp}^2)$

- $q(x, \mathbf{b}_{\perp})$ in \perp polarized nucleon is distorted compared to longitudinally polarized nucleons!
- ightharpoonup mean \perp displacement of flavor q (\perp flavor dipole moment)

$$d_y^q \equiv \int dx \int d^2 \mathbf{b}_{\perp} q_X(x, \mathbf{b}_{\perp}) b_y = \frac{1}{2M} \int dx E_q(x, 0, 0) = \frac{\kappa_q^p}{2M}$$

with
$$\kappa_{u/d}^p \equiv F_2^{u/d}(0) = \mathcal{O}(1-2) \quad \Rightarrow \quad d_y^q = \mathcal{O}(0.2fm)$$

ullet simple model: for simplicity, make ansatz where $E_q \propto H_q$

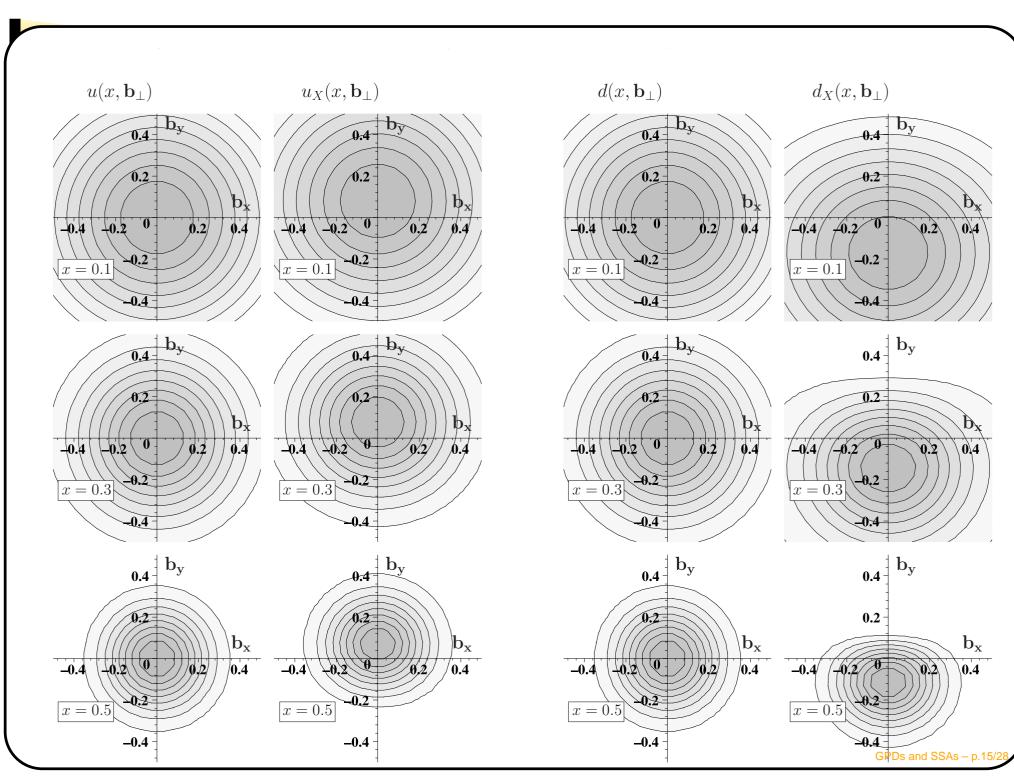
$$E_u(x, 0, -\boldsymbol{\Delta}_{\perp}^2) = \frac{\kappa_u^p}{2} H_u(x, 0, -\boldsymbol{\Delta}_{\perp}^2)$$

$$E_d(x, 0, -\boldsymbol{\Delta}_{\perp}^2) = \kappa_d^p H_d(x, 0, -\boldsymbol{\Delta}_{\perp}^2)$$

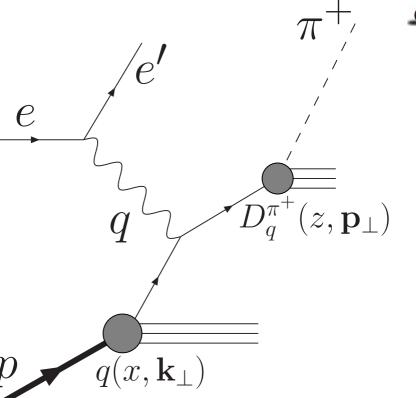
with
$$\kappa_u^p=2\kappa_p+\kappa_n=1.673$$

$$\kappa_d^p=2\kappa_n+\kappa_p=-2.033.$$

■ Model too simple but illustrates that anticipated distortion is very significant since κ_u and κ_d known to be large!



SSA $(\gamma + p \uparrow \longrightarrow \pi^+ + X)$



- use factorization (high energies) to express momentum distribution of outgoing π^+ as convolution of
 - momentum distribution of quarks in nucleon
 - \hookrightarrow unintegrated parton density $q(x, \mathbf{k}_{\perp})$
 - momentum distribution of π^+ in jet created by leading quark q
 - \hookrightarrow fragmentation function $D_q^{\pi^+}(z,\mathbf{p}_{\perp})$

- lacktriangleup average ot momentum of pions obtained as sum of
 - average k_{\perp} of quarks in nucleon (Sivers effect)
 - average \mathbf{p}_{\perp} of pions in quark-jet (Collins effect)

Sivers distribution

Sivers: Momentum distribution of unpolarized quarks in a \perp polarized proton

$$f_{q/p^{\uparrow}}(x, \mathbf{k}_{\perp}) = f_1^q(x, \mathbf{k}_{\perp}^2) - f_{1T}^{\perp q}(x, \mathbf{k}_{\perp}^2) \frac{(\hat{\mathbf{P}} \times \mathbf{k}_{\perp}) \cdot S}{M}$$

$GPD \longleftrightarrow SSA (Sivers)$

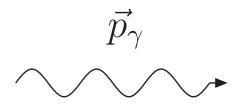
- without FSI, $\langle \mathbf{k}_{\perp} \rangle = 0$, i.e. $f_{1T}^{\perp q}(x, \mathbf{k}_{\perp}^2) = 0$
- **▶** Brodsky, Hwang, Schmidt: simple model, which demonstrated that, including FSI, $\langle \mathbf{k}_{\perp} \rangle \neq 0$
- FSI formally included by appropriate choice of Wilson line gauge links (Boer et al; Collins; Ji et al;...) in gauge invariant def. of $q(x, \mathbf{k}_{\perp})$
- → Qiu, Sterman; Boer et al.;...

$$\langle \mathbf{k}_{\perp} \rangle \sim \left\langle P, S \left| \bar{q}(0) \gamma^{+} \int_{0}^{\infty} d\eta^{-} G^{+\perp}(\eta) q(0) \right| P, S \right\rangle$$

- $\int_0^\infty d\eta^- G^{+\perp}(\eta)$ is the \perp impulse that the active quark acquires as it moves through color field of "spectators"
- What should we expect for Sivers effect in QCD?
- What do we learn if we measure k_{\perp} -asymmetry ?

$GPD \longleftrightarrow SSA (Sivers)$

• example: $\gamma p \to \pi X$ (Breit frame)





- u,d distributions in \bot polarized proton have left-right asymmetry in \bot position space (T-even!); sign determined by κ_u & κ_d
- attractive FSI deflects active quark towards the center of momentum

GPD ← → SSA (Sivers); formal argument

treat FSI to lowest order in g

 \hookrightarrow

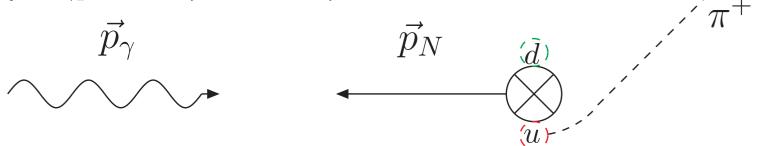
$$\left\langle k_q^i \right\rangle = -\frac{g}{4p^+} \int \frac{d^2 \mathbf{b}_{\perp}}{2\pi} \frac{b^i}{\left|\mathbf{b}_{\perp}\right|^2} \left\langle p, s \left| \bar{q}(0) \gamma^+ \frac{\lambda_a}{2} q(0) \rho_a(\mathbf{b}_{\perp}) \right| p, s \right\rangle$$

with $\rho_a({\bf b}_\perp)=\int dr^-\rho_a(r^-,{\bf b}_\perp)$ summed over all quarks and gluons

- → SSA related to dipole moment of density-density correlations
- GPDs (N polarized in $+\hat{x}$ direction): $u \longrightarrow +\hat{y}$ and $d \longrightarrow -\hat{y}$
- \hookrightarrow expect density density correlation to show same asymmetry $\langle b^y \bar{u}(0) \gamma^+ \frac{\lambda_a}{2} u(0) \rho_a(\mathbf{b}_\perp) \rangle > 0$
- → sign of SSA opposite to sign of distortion in position space

$GPD \longleftrightarrow SSA (Sivers)$

• example: $\gamma p \to \pi X$ (Breit frame)



- u,d distributions in \bot polarized proton have left-right asymmetry in \bot position space (T-even!); sign determined by κ_u & κ_d
- attractive FSI deflects active quark towards the center of momentum
- \hookrightarrow FSI translates position space distortion (before the quark is knocked out) in $+\hat{y}$ -direction into momentum asymmetry that favors $-\hat{y}$ direction
- \hookrightarrow correlation between sign of κ_q and sign of SSA: $f_{1T}^{\perp q} \sim -\kappa_q$
- signs of SSA confirmed at HERMES

Chirally Odd GPDs

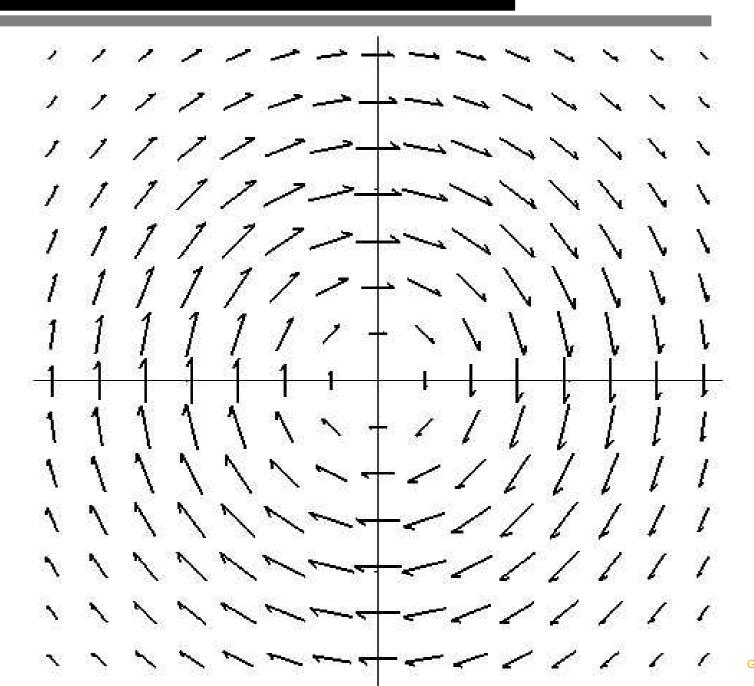
$$\int \frac{dx^{-}}{2\pi} e^{ixp^{+}x^{-}} \left\langle p' \left| \bar{q} \left(-\frac{x^{-}}{2} \right) \sigma^{+j} \gamma_{5} q \left(\frac{x^{-}}{2} \right) \right| p \right\rangle = H_{T} \bar{u} \sigma^{+j} \gamma_{5} u + \tilde{H}_{T} \bar{u} \frac{\varepsilon^{+j\alpha\beta} \Delta_{\alpha} P_{\beta}}{M^{2}} u + E_{T} \bar{u} \frac{\varepsilon^{+j\alpha\beta} \Delta_{\alpha} \gamma_{\beta}}{2M} u + \tilde{E}_{T} \bar{u} \frac{\varepsilon^{+j\alpha\beta} P_{\alpha} \gamma_{\beta}}{M} u + \tilde{E}_{T} \bar{u} \frac{\varepsilon^{+j\alpha\beta} P_{\alpha} \gamma_{\beta}}{M} u + \tilde{E}_{T} \bar{u} \frac{\varepsilon^{+j\alpha\beta} P_{\alpha} \gamma_{\beta}}{M} u + \tilde{E}_{T} \bar{u} \frac{\varepsilon^{+j\alpha\beta} D_{\alpha} \gamma_{\beta}}{M} u + \tilde{E}_{T} \bar{u} \frac{\varepsilon^{+j\alpha\beta} D_{\alpha}}{M} u + \tilde{E}_{T} \bar{u$$

- See also M.Diehl+P.Hägler, hep-ph/0504175.
- Fourier trafo of $2\tilde{H}_T^q + E_T^q$ for $\xi = 0$ describes distribution of transversity for <u>un</u>polarized target in \perp plane

$$q^{i}(x, \mathbf{b}_{\perp}) = \frac{\varepsilon^{ij}}{2M} \frac{\partial}{\partial b_{i}} \int \frac{d^{2} \mathbf{\Delta}_{\perp}}{(2\pi)^{2}} e^{i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}_{\perp}} \left[2\tilde{H}_{T}^{q}(x, 0, -\mathbf{\Delta}_{\perp}^{2}) + E_{T}^{q}(x, 0, -\mathbf{\Delta}_{\perp}^{2}) \right]$$

origin: correlation between quark spin (i.e. transversity) and angular momentum

Transversity Distribution in Unpolarized Target



Transversity Distribution in Unpolarized Target

- attractive FSI expected to convert position space asymmetry into momentum space asymmetry
- \hookrightarrow e.g. quarks at negative b_x with spin in $+\hat{y}$ get deflected (due to FSI) into $+\hat{x}$ direction
- \hookrightarrow (qualitative) connection between Boer-Mulders function $h_1^{\perp}(x, \mathbf{k}_{\perp})$ and the chirally odd GPD $2\tilde{H}_T + E_T$ that is similar to (qualitative) connection between Sivers function $f_{1T}^{\perp}(x, \mathbf{k}_{\perp})$ and the GPD E.

Sivers vs. Boer-Mulders distribution

Sivers: Momentum distribution of unpolarized quarks in a \perp polarized proton

$$f_{q/p^{\uparrow}}(x, \mathbf{k}_{\perp}) = f_1^q(x, \mathbf{k}_{\perp}^2) - f_{1T}^{\perp q}(x, \mathbf{k}_{\perp}^2) \frac{(\hat{\mathbf{P}} \times \mathbf{k}_{\perp}) \cdot S}{M}$$

ullet Boer-Mulders: Momentum distribution of \bot polarized quarks in an unpolarized proton

$$f_{q^{\uparrow}/p}(x, \mathbf{k}_{\perp}) = f_1^q(x, \mathbf{k}_{\perp}^2) - h_1^{\perp q}(x, \mathbf{k}_{\perp}^2) \frac{(\hat{\mathbf{P}} \times \mathbf{k}_{\perp}) \cdot S_q}{M}$$

Transversity Distribution in Unpolarized Target

- attractive FSI expected to convert position space asymmetry into momentum space asymmetry
- \hookrightarrow e.g. quarks at negative b_x with spin in $+\hat{y}$ get deflected (due to FSI) into $+\hat{x}$ direction
- \hookrightarrow (qualitative) connection between Boer-Mulders function $h_1^{\perp}(x, \mathbf{k}_{\perp})$ and the chirally odd GPD $2\tilde{H}_T + E_T$ that is similar to (qualitative) connection between Sivers function $f_{1T}^{\perp}(x, \mathbf{k}_{\perp})$ and the GPD E.
- \hookrightarrow qualitative predictions for $h_1^{\perp}(x, \mathbf{k}_{\perp})$
 - sign of h_1^{\perp} opposite sign of $2\tilde{H}_T + E_T$
- ullet use measurement of h_1^\perp to learn about spin-orbit correlation in nucleon wave function
- use LGT calcs. of $2\tilde{H}_T + E_T$ to make qualitative prediction for h_1^{\perp}

Summary

GPDs provide decomposition of form factors w.r.t. the momentum of the active quark

$$\int \frac{dx^{-}}{2\pi} e^{ixp^{+}x^{-}} \left\langle p' \left| \bar{q} \left(-\frac{x^{-}}{2} \right) \gamma^{+} q \left(\frac{x^{-}}{2} \right) \right| p \right\rangle$$

- GPDs resemble both PDFs and form factors: defined through matrix elements of light-cone correlator, but $\Delta \equiv p' p \neq 0$.
- ▶ t-dependence of GPDs at ξ = 0 (purely \bot momentum transfer) ⇒ Fourier transform of impact parameter dependent PDFs $q(x, \mathbf{b}_\bot)$
- \hookrightarrow knowledge of GPDs for $\xi = 0$ provides novel information about nonperturbative parton structure of nucleons: distribution of partons in \bot plane

$$q(x, \mathbf{b}_{\perp}) = \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} H(x, 0, -\mathbf{\Delta}_{\perp}^2) e^{i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}_{\perp}}$$
$$\Delta q(x, \mathbf{b}_{\perp}) = \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} \tilde{H}(x, 0, -\mathbf{\Delta}_{\perp}^2) e^{i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}_{\perp}}$$

• $q(x, \mathbf{b}_{\perp})$ has probabilistic interpretation, e.g. $q(x, \mathbf{b}_{\perp}) > 0$ for x > 0

Summary

- $\Delta_{\perp} E(x,0,-\Delta_{\perp}^2)$ describes how the momentum distribution of unpolarized partons in the \perp plane gets transversely distorted when is nucleon polarized in \perp direction.
- ullet (attractive) final state interaction in semi-inclusive DIS converts ot position space asymmetry into ot momentum space asymmetry
- \hookrightarrow simple physical explanation for observed Sivers effect in $\gamma^* p \to \pi X$
- $m{\mathcal{P}}$ $2\tilde{H}_T + E_T$ measures correlation between \bot spin and \bot angular momentum
- physical explanation for Boer-Mulders effect; suggested relation between h_1^{\perp} and the GPDs $2\tilde{H}_T + E_T$
- **●** GPDs vs. $q(x, \mathbf{b}_{\perp})$: M.B., PRD **62**, 71503 (2000), Int. J. Mod. Phys. **A18**, 173 (2003); see also D. Soper, PRD **15**, 1141 (1977).
- Connection to SSA in M.B., PRD 69, 057501 (2004); NPA 735, 185 (2004); PRD 66, 114005 (2002).